Dynamegg

Dynamo

Reference documentation

Open Circle Solutions

Colophon

Dynamgg

Dynamo: Web Application Accelerator Framework, version 4.0.0-RC2.

Developed, maintained and sponsored by:

/4
OPENCIRCLE

SOLUTIONS

Copyright © 2014 - 2024 Open Circle Solutions.

Nothing from this document may be copied and/or made public by use of print, photocopy,
microfilm or by any other means, without prior permission of Open Circle Solutions.

Table of contents

ColoPNON 2
LIntroducCtion. . . 6
2. Architectural overview 7
3. Theentity model 8
3.0 BASICS . 8
3.2 Entity level settings 9
33 ALNDULES 9
34. Defaults and attribute overrides. 11
35 Message bundle overrides 11
4. Attribute model settings 14
4.1 Allowed extensions 14
4.2. AttribUte type. .. 14
4.3 AULOfill INSTrUuCtioNS ... 16
4.4. Boolean field mode 17
4.5 CASCAAR . . . 17
4.6.CUrrenCy COe 18
4.7.Datetype . 18
4.8 Default search value 19
4.9. Default search value from. 19
4.10. Default search value to 20
411 Default value. 20
4.12. DescCription 21
4.13. Display format 21
4.14. Display name 21
4.15. Download allowed 22
416, Editable type. 22
4.17. Element collection mode 22
418 EMail .. 23
419 Enum field mode 23
4.20. File name property. 23
4.21. Group together With 24
4.22. Ignoreinsearch filter. 25
4.23.1MAGE 25
4.24. LooRUp entity reference 25
4.25. LOORUP QUEIY TYPE . . 25
4.26. Max collection size. 26
4.27. Max length 26
4.28 Maxlength in grid. 26
4.29. Max value 26
4.30. Membertype 27

Dynamo: Reference documentation page 3 of 116

4.31. Min collection Size. 27
4.32. Minlength .. . 27
4.33. Minvalue 28
4.34. Multiple search 28
4.35. Navigable ... 29
4.36. Navigation link 29
4.37. Needed in data 29
4.38 Number field mode 30
4.39. Number field Step. 30
4.40. Percentage 30
4.41. PreCiSion ... 31
4.42. Prompt. 31
4.43. Quick-add allowed. 31
4.44. Replacement search path. 32
4.45. Replacement sort path. 33
4.46. Required for searching 33
4.47.5earchable 33
4.48. 5eqrch case-sensitive. 33
4.49. Search date only. 34
4.50. Search forexactvalue 34
4.51. Search prefix only 34
4.52. Search select mode. 35
4.53. Select mode 36
4.54.50rtable 36
4.55. Text field mode 36
456, THM SPACES ... 37
4.57. True and false representation 37
458 URL 37
4.59. Visible in form 38
4.60. Visible in grid 38
5. Attribute ordering and grouping 39
5.1 Attribute ordering 39
5.2. Grid and search form attribute ordering 39
5.3 Attribute grouping 40
6. Advanced entity model topics. 42
6.1. Nested entity models. 42
6.2. Element collections 42
7. Data access, service layers and general concepts. 43
7.1 Data access layer and entities 43
7.2 . SCIVICE . 44
7.3 Fetching and paging 45
7.4. Entity inftialization 47

Dynamo: Reference documentation page 4 of 116

75 REST APl 47
7.6.Validation 48
7.7. ChecRing for identical entities 49
7.8. Default services and DAOS 50
8. Configuration 51
8.1. Prefix dynamoframeworR 51
8.2. Prefix dynamoframeworRollama 52
8.3. Prefix dynamoframeworR.Openai 52
8.4. Prefix dynamoframework.defaults. 52
8.5. Prefix dynamoframework.defaults.endpointso 54
8.6. Prefix dynamoframework.bedrock 54
8.7. Prefix dynamoframeworR.vertexai 55
8.8. Prefix dynamoframeworR.CSV 55
Q. Project set-Up .. . 57
0.1 Back-end set-Up 57
9.2 Message bundles 63
0.3. Authentication and authorization. 64
0.4. Front-end set-Up. 65
9.5. Adding Dynamo to an existing front-end project. 66
0.6. Code generation. 68
10. General front-end services 70
10.1. Localization. ... 70
10.2. NOLIficQtion MESSAQES 70
11. General Ul concepts 72
11.1. Search filters 72
112, Updates. . . 76
11.3. Editing complex attributes. 76
11.4. Hidden fields 78
11.5. View OBJECES 79
11.6. Entity model actions. 79
11.7. AULROKIiZAtION . . 81
12. Composite Ul COmMponents 84
12.1. GenericSearchLayout 84
12.2. GENEFICFOIM . . . 90
12.3. GenericSplitLayout 105
12.4. GenericEditTableLayout. 107
125, PDF VIEWer. . 108
12.6. PDF viewer dialog. 109
13. Additional functionality. 111
131 Excel and CSV eXport 111
13.2.LooRup tables 112
Appendix A Adding anew entity. 115

Dynamo: Reference documentation page 5 of 116

1. Introduction

The Dynamo Web Application Accelerator Framework is a software development framework
developed by Open Circle Solutions that aims to increase productivity by using design
principles such as convention over configuration, model-driven development and DRY (don't
repeat yourself).

At the core of Dynamo is the concept of the Entity Model. The Entity Model describes the
attributes and behaviour of an entity (or domain object) in your application. This Entity Model
can then be used as the basis for creating forms, tables, search screens etc.

The Entity Model of an entity is automatically constructed based on the properties of the
attributes of the entity (using sensible defaults as described by the convention over
configuration principle) and can further be modified by using annotations and message
bundle entries. The main goal is to reduce the amount of (boilerplate) code required to
perform common actions like creating search screens and edit forms.

Complementing the Entity Model is a set of user interface components (widgets) that can be
used to quickly construct screens for common use cases, and several base classes for the
Data Access and Service layers.

The Dynamo framework is built around a number of proven and highly productive
technologies:

- JPA3.1 for ORM

- QueryDSL for type-safe query generation

- Spring Boot as the application framework

- Angular (v16) as the front-end framework of choice

-+ PrimeNG for a rich suite of components

The Dynamo Framework is distributed under the terms of the Apache License, a permissive
open-source license for free and open-source software (FOSS).

The sources of Dynamo can be found at GitHub.

Dynamo: Reference documentation page 6 of 116

https://www.opencirclesolutions.nl
https://jakarta.ee/specifications/persistence/
https://querydsl.com
https://docs.spring.io/spring-boot/index.html
https://angular.dev
https://primeng.org
https://www.apache.org/licenses/LICENSE-2.0.txt
https://github.com/opencirclesolutions/dynamo

2. Architectural overview
The general principle of the Dynamo Framework is as follows:

- The developer creates a back-end application (based on Spring Boot) that can
communicate with a relational database for storing and retrieving data.

- The back-end application contains any number of domain objects/entities that
correspond to the database tables.

- Based on these entities, Dynamo constructs entity models that describe the behaviour of
the user interface that can be used to manipulate these entities. This includes things like
being able to define whether it is possible to search on certain attributes, when and how
attributes can be edited, which values are allowed, how the values are formatted, etc.
(there are dozens of different settings).

- The back-end application offers several APIs that are used by the front-end: one API that
can be used to retrieve the entity model for a certain entity, and one API that can be used
(in a generic fashion) to perform CRUD operations on the entity. In addition to this there
are also APIs for uploading files, for exporting data to CSV/Excel, and for automatically
filling forms based on LLM.

- The developer also creates a front-end application, using the Dynamo Front End library
based on Angular and PrimeNG. This application offers a number of reusable user
interface components (e.g., a search screen, an edit layout, a split layout, etc) that allow
the developer to quickly define CRUD screens. This generally takes just a couple of lines
of code and is almost completely declarative.

- At run-time, when the user accesses a screen, the Dynamo Framework will call the entity
model API in order to retrieve the entity model for a certain entity. The data from this
entity model will then be used to render the screen, e.g., to display the correct fields in a
search form or the correct columns in a table. In conjunction with this, the framework will
also call the CRUD API to retrieve the data to display.

Dynamo: Reference documentation page 7 of 116

3. The entity model

The entity model describes the behaviour of the user interface that can be used to
manipulate these entities. This includes things like being able to define whether it is possible
to search on certain attributes, when and how attributes can be edited, which values are
allowed, how the values are formatted, etc.

3.1. Basics

3.1.1. Back-end

To create the entity model, you need access to an EntityModelFactory. The
EntityModelFactory is a Spring singleton and can be acquired by injection (@Inject or
@Autowired). You can also acquire a reference to the EntityModelFactory by calling the
getEntityModelFactory() method on the ServicelLocator which in turn can be
retrieved by calling ServicelLocatorFactory.getServicelLocator ().

You can then acquire the EntityModel for a certain entity by calling the
getModel(Class<?> clazz) method. This will retrieve the entity model for the specified
class, lazily constructed when needed. Note that the entity model is effectively immutable
and application-scoped (or more precisely, it has the Spring Singleton scope, i.e. there is one
instance per Spring application context).

This also means that the same entity model is in principle used by all screens within an
application. Since this would be too restrictive in practice, it is possible to construct separate
instances for separate screens or use cases, by calling the getModel(String reference,
Class<?> clazz) method. This will construct the entity model based on the provided class
(the second parameter), but it will allow you to override certain attributes using message
bundle entries (more on this later). The reference string is the unique identifier that you
assign to the model (if you just call the getModel() variant with a single parameter, then the
simple name of the class is used as the reference) and which is then used as part of the
message bundle entry.

The classes for which you create an entity model must inherit from the
org.dynamoframework.domain.AbstractEntity class. See chapter Data access, service
layers and general concepts for details.

3.1.2. AP|

The back-end application offers an API for retrieving the entity model for a certain entity. The
entity model can be retrieved by doing a GET request to /api/dynamo/model/{entityNamel.
The entity name is the same as the simple name of the Java class. e.g., to retrieve the entity
model for the “Organization” entity, make the following call:

GET /api/dynamo/model/Organization

Optionally, you can pass along a reference parameter to specify an exact version of the
entity model to retrieve (we learn more about versions of entity models in section
EntityModelReference).

Dynamo: Reference documentation page 8 of 116

GET
/api/dynamo/model/Organization?reference=PersonOrganizationSearch

As you will see later on, entity models can be nested: if an entity has a reference to another
entity (one-to-many, many-to-one, etc) then a nested entity model for that entity will be
created. You can retrieve a nested entity model by performing a GET to

/api/dynamo/model/{entityName}/attribute/{attributeName}. E.g.
/api/dynamo/model/Gift/attribute/translations

Generally speaking, you should not have to call these endpoints directly as the framework
will do it for you.

3.2. Entity level settings

The entity model supports several attributes that define how the entity itself is represented.
These include:

- displayName: the name of the entity (e.g., “Car”)

- displayNamePlural: the name of the entity, in plural form (e.g., “Cars")

- description: textual description of the entity

- displayProperty: the name of the property to use when displaying the entity inside
e.g., a combo box. This property is also used as the title of the entity that is placed above
an edit form.

- sortOrder: how the entities are sorted by default when displayed in a grid or list. The
sortOrder consists of a comma separated list of attribute names and sort directions,
eg., name asc, age desc. The direction is optional and if it is not supplied, asc will be
used by default. This should be familiar to anybody who has worked with SQL.

- maxSearchResults indicates the maximum number of results to return form a search
query (not just per page, but in totall By default, this is set to the value of
Integer.MAX_VALUE which means there are no restrictions in place. If you set this to a
lower value, the result set of a search will be capped at this maximum value - the table
and paginator will only show results up to the maximum (and anything beyond that will
appear to not exist).

- createAllowed indicates whether creating new entities is allowed.
- updateAllowed indicates whether updating existing entities is allowed.

- listAllowed indicates whether executing GET requests (without specifying an ID) to
request the full list of entities is allowed.

- getAllowed indicates whether executing a GET request to retrieve a single entity is
allowed.

- exportAllowed indicates whether exporting the data to Excel or CSV is allowed.

3.3. Attributes

Every entity model consists of a number of attribute models. By default, an attribute model is

Dynamo: Reference documentation page 9 of 116

created for every valid property of the entity. e.g., if you have an entity Person with properties
‘name” and "age’, then the attribute model for the Person entity will contain two attribute
models, one for “name” and one for “age”.

The following rules apply when constructing the attribute models:

- An attribute model will be created for every public, non-static, no-parameter getter-
method that follows the JavaBean naming convention (e.g., getAge(); for Boolean or
boolean properties, the getter may also start with “is", e.g., isValid()).

- You can use Lombok to generate getters and setters for you.

- The entity class does not necessarily have to contain an actual field corresponding to the
property. This allows you to create attribute models for read-only or composite
properties (e.g., a getNameAndAge () method which concatenates the name and age as a
String). Note that such an attribute will have to be defined as read-only.

- Certain attributes are ignored. Currently, this includes only version (used for JPA
optimistic locking) and class (as every object has a getClass() method).

- Attributes can be simple (String, Integer, Long, enumerated types, etc.) or complex (a
reference to another entity, a collection of primitive values, or a collection of other
entities). The entity model generation is nested, which means that if a property of an
entity is again an entity, then an entity model for the nested property will also be
generated. This entity model is separate from the non-nested entity model that would be
constructed directly for the entity.

Nearly all settings for nested models are treated the same as the setting on the top
level, but there is one exception: the searchable setting on attributes of nested
entities is ignored - this is because when you are creating a search screen for an
entity, you normally want to search on the attributes of that entity, not on the nested
attributes.

For nested entity models, the id attribute and the displayProperty attribute will be
marked with visibleInGrid=true. This is done so that a textual description of a
nested entity can be shown inside a grid.

- Getters that are annotated with @AssertTrue or @AssertFalse are skipped (these are
methods that are used for Bean Validations, not properties for the metamodel).

An attribute model has a name attribute that is equal to the name of the property. This name
can be used to retrieve the attribute model from the entity model:

AttributeModel getAttributeModel(String attributeName);

For a nested attribute model, the name of the model consists of the concatenation of the
names of the non-nested models separated by periods. e.g,, if you have a Person entity that
has an attribute address of type Address, then the houseNumber attribute model of the
address has the path address.houseNumber.

This should all make sense as it corresponds to the paths that are used in e.g.,, JPQL queries
and for data binding in Angular.

Dynamo: Reference documentation page 10 of 116

3.4. Defaults and attribute overrides

The entity model generation is based on sensible defaults and metadata: e.g., the value of
the type setting of an attribute model is directly taken from the Java type of the property.
Also, certain other aspects such as whether the attribute is visible in a grid or can be used in a
search form are derived from this type (e.g., by default a complex attribute will not be visible
in a grid).

In addition to this, the entity model generation process will take certain JSR-303 annotations
(e.g., @NotNull, @Size) into account. A detailed explanation for each setting will be given
below.

If the default values are not sufficient, you can override them by using annotations:

- On the entity level, you can use the @Model annotation.

-+ On the attribute level, you can use the @Attribute annotation.

The @Model annotation can be used like this:

@Model(displayProperty = "description")
public class Meeting extends AbstractEntity<Integer> {

The @Attribute annotation can be placed either directly on the property, or on its getter
method. Annotations placed on the getter method override those placed on the property, to
easily allow you to override default behaviour in subclasses. Within a single entity class, you
can use both access types interchangeably.

3.5. Message bundle overrides

The annotation override mechanism is quite powerful, but it has some drawbacks. e.g, it
hard-codes certain String values (display name, description) into your application, and it does
not directly allow for internationalization. It also only allows you to override the behaviour of
the "default” entity model that is based directly on the class, and not the behaviour of any
derived entity models.

If you need to override the behaviour of a derived entity model, you can use the message
bundle mechanism to achieve this. Message bundle overrides must be placed in the
src/main/resources/META-INF/entitymodel.properties file (create a locale-specific version of
this file if you need to; the normal Java message bundle mechanic is supported).

Message bundle entries in general have the following structure;

[Reference].[AttributeModelName].[Attribute]=[Value]

Where:

- [Reference] is the reference to the attribute model. This is the simple class name of the
entity for a standard entity model, and the user-provided reference for a non-standard

Dynamo: Reference documentation page 11 of 116

model.

- [AttributeModelName] is the (possibly nested) name of the attribute model This is
empty in case you are directly overriding a setting of the Entity.

- [Attribute] is the setting that you want to modify. For a full list, see the EntityModel
class which contains constants that denote the possible values (or refer to the sections
below).

- [Value] is the desired value of the setting.

The [AttributeModelName] part must be omitted when you want to directly set an
attribute of the entity model itself.

Some examples:
Organization.displayName=Criminal Organization

Sets the display name of the Organization entity to “Criminal Organization”.

Person2.displayName=Gang Member

Sets the display name for Person in the Person2 entity model to “Gang Member",

Person.name.visibleInForm=true

Sets the visibility of the “name” attribute model to true.

Person.address.street.readOnly=true

Sets the “read only” setting of the address.street attribute model (a nested attribute
model) to false.

Please remember the following:

- For Boolean values, use the (lower case) values true and false.

- For numeric values, simply use the String representation of the numeric value. Use the
period “." as the decimal separator.

- For enumeration values, use the upper-case String representation of the enumeration
value.

- For dates and times, the value of the attribute models' displayFormat setting is used.
By default, this has the following values:

dynamoframework.defaults.date-format (dd-MM-yyyy) for dates

dynamoframework.defaults.time-format (HH:mm:ss) for times

Dynamo: Reference documentation page 12 of 116

dynamoframework.defaults.date-time-format (dd-MM-yyyy HH:mm:ss)

- For the visibleInForm and visibleInGrid settings, both the enumeration values
(SHOW/HIDE) and the Boolean values true and false are supported.

Dynamo: Reference documentation page 13 of 116

4. Attribute model settings

In this section, we explain all the supported settings of the attribute model.

4.1. Allowed extensions

In message bundle:

allowedExtensions = [Comma separated list of extensions]

This setting can be used to specify the extensions of the files that are accepted by the file
upload component that is generated for a LOB property. By default, its value is empty, which
means there are no restrictions on the file type.

The value can be set to a comma-separated list of supported extensions, e.g., bmp, jpg, png.

On the @Attribute annotation, you can use an array of String values instead of a comma-
separated String. Extensions are not case-sensitive, and you must not include the *'
character.

o ‘ When defining extensions in Dynamo, never include a . (dot).

4.2. Attribute type

The attributeType setting is a classification of the type of the property. It is determined
automatically during the entity model generation process and can have the following values:

- BASIC: represents a simple property like a String, a number, a date, etc.

- DETAIL: a property that appears as a @OneToMany or @ManyToMany relation in the entity
class, eg., the orderLines attribute inside an Order entity will be considered a DETAIL
attribute.

- MASTER: a property that appears as a @0neToOne or @ManyToOne in the entity class.

- LOB: a property that is annotated with @Lob and represents a large binary object (like a file
or an image).

- EMBEDDED: used during the entity model construction process to handle embedded
properties (using the @Embedded annotation). This will be covered in the Advanced
section.

- ELEMENT_COLLECTION: a property that is annotated with the @ElementCollection
annotation, i.e. a collection of simple values like integers and Strings (The JPA spec does
allow more complex element collections, but these are not currently supported by
Dynamo).

The attribute type in combination with the Java type determines how a certain attribute will
be displayed on-screen in an edit form:

- For a BASIC property, a simple user interface component will be displayed, based on the

Dynamo: Reference documentation page 14 of 116

type of the property:

For String fields and numeric fields, a text field will be rendered. For a String property,
you can use the textFieldMode setting to render a text area or a password field
instead. For an Integer field, you can use the numberFieldMode setting to render an
“‘integer field" instead.

For a Boolean, a checkbox will be rendered by default. You can change this to a
toggle button by changing the value of the booleanFieldMode setting.

Fora LocalTime attribute, a time picker will be rendered.
Fora LocalDate attribute, a date picker will be rendered.
ForalLocalDateTime or Instant attribute, a date/time picker will be rendered.

For an enumeration, a combo box will be created. You can use the message bundle
mechanism to specify translations for the enumeration values (more on this below).

- For a LOB property, a file upload field will be created.

- For a MASTER property, by default a combo box that contains all the possible values (as
retrieved from the repository) will be created. You can replace this by a lookup field or
ListSelect by changing the value of the selectMode setting.

- For a DETAIL property, the behaviour will depend on the value of the nestedDetails
setting:

In case nestedDetails is set to true, a table that can be used to edit the details
inline as part of the edit form is rendered. This is used for nested collections that
cannot exist without the parent entity, e.g., the OrderLines belonging to an Order.

In case nestedDetails is set to false, a multiple select component that can be used
to select various (already existing) entities is rendered. You can switch this to a lookup
field by changing the value of the selectMode setting.

+ For an ELEMENT_COLLECTION property, the application either renders a “chips”
component (@ component that allows you to specify multiple values by typing) or a
simple pop-up dialog that allows you to enter extra values. You can modify this behaviour
by changing the value of the elementCollectionMode setting.

Inside a search form the rendering is a slightly different:

- For a BASIC property:

For a String property, a text field is created. This text field can be used to perform a
search. You can use additional properties to toggle the case sensitivity and whether
to allow prefix or substring matches. The textAreaMode setting is ignored in search
forms.

For a numeric or a date/time property, two search fields are generated. These allow
the user to perform an interval search (return all values that are higher than or equal
to the value in the first field and lower than or equal to the value in the second field). If
you do not want this behaviour, you can change the value of the
searchForExactValue setting to true; if you do this then only a single search field
will appear.

For a property of type LocalDateTime or Instant you can set the searchForDate
setting to true. If you do this then only a single search field will be created. In this field

Dynamo: Reference documentation page 15 of 116

you can select the date to search on.

For a Boolean property, a three-way checkbox displayed. This checkbox has three
possible values: "true’, "false’, and "no value”.

For an enumeration, a combo box containing all values of the enumeration is
displayed.

- For a MASTER property, by default a combo box containing all possible values of the
master entity is displayed. You can use the searchSelectMode and/or selectMode
settings to replace this by a lookup field.

- For a DETAIL property, by default a multi-select field is created. You can use the
searchSelectMode and/or selectMode settings to replace this by a lookup field.

- LOB properties cannot be used in search forms.
The attributeType setting also determines whether the property will be visible by default:

- In a results grid, by default only BASIC attributes will be visible. Use the visibleInGrid
attribute to show a complex attribute inside a grid.

For a MASTER property, the value of its displayProperty property will be used.

For a DETAIL property (remember, this represents a collection!), the values of the
displayProperty properties of all individual entities in the collection will be
displayed, separated by commas.

- Attributes of type MASTER and DETAIL will by default not be displayed inside an edit
form. You can change this by setting the visibleInForm setting of the attribute model
to true.

+ When displaying an enumeration value inside a combo box, the values that are displayed
inside the combo box are taken from the message bundle:
[SimpleClassName] . [EnumerationValue]=[Desired value]

Eg.

Reputation.REALLY_NOT_FEARSOME=Really not fearsome
Reputation.MILDLY_FEARSOME=Mildly fearsome
Reputation.FEARSOME=Fearsome
Reputation.EXTREMELY_FEARSOME=Extremely fearsome

4.3. Autofill instructions

In message bundle:

autofillInstructions = [String]

The autofillInstructions setting can be used to define the attribute-specific

Dynamo: Reference documentation page 16 of 116

instructions for automatically filling a form based on an Al service (Large Language Model).
This is covered in more detail in the section FormFillEnabled.

4.4. Boolean field mode

In message bundle:

booleanFieldMode = CHECKBOX | TOGGLE | SWITCH

The booleanFieldMode setting can be used to change the type of user interface
component that is used to modify an attribute of type Boolean.

The default value for this setting is derived from the value of the system property
dynamoframework.defaults.boolean-field-mode. It defaults to CHECKBOX but can be
changed to TOGGLE (a toggle button) or SWITCH (an on/off switch).

This only affects the component that is used inside an edit form. Inside a search form, the
framework will always use a tri-state checkbox (i.e. a component that can have the values
true, false, or undefined).

4.5. Cascade

In message bundle:

cascade.[index] = [Path to attribute]
cascadeFilterPath.[index] = [Path to attribute]
cascadeMode.[index] = BOTH | EDIT | SEARCH

The cascade setting can be used to define “cascading search” for selection components.
Cascading search means that when you select a value in a certain component, the available
values in another component change based on this choice. e.g., suppose that you are editing
or searching for an Organization and you have selection fields for a country and for a list of
members of the organization- choosing a country from the list will limit the values in member
list to the people that originate from that country.

To set up cascading, you can define one or more @Cascade annotations as part of the
@Attribute annotation. Each @Cascade annotation takes three parameters:

- cascadeTo - this is the path to the attribute for which the selection must change in
response to a change of the annotated attribute. In our example, the attribute to change is
members (see below).

- filterPath - this is the path that determines which filter to apply to the selection
component that is on the receiving end of the cascade action. In our example, we want to
filter a list of Persons so that only persons from a certain country are returned - this
country is stored in the country0f0rigin property of the person so this is our filter path.

- mode - this specifies whether the cascading should be enabled in search forms, in edit
forms, or in both cases. The default is BOTH.

Dynamo: Reference documentation page 17 of 116

@Attribute(visibleInGrid = VisibilityType.SHOW, searchable =
SearchMode.ALWAYS, visibleInForm = VisibilityType.SHOW, cascade =
@Cascade(cascadeTo = "members", filterPath = "countryOfOrigin",
mode = CascadeMode.EDIT))

private Country countryOfOrigin;

@Attribute(searchable = SearchMode.ALWAYS, visibleInForm =
VisibilityType.SHOW)
private Set<Person> members = new HashSet<>();

Setting up cascading in a message bundle is a bit more involved. You can do so by defining
two or three messages like this:

Organization.countryOfOrigin.cascade.1=members
Organization.countryOfOrigin.cascadeFilterPath.1=countryOfOrigin
Organization.countryOfOrigin.cascadeMode.1=EDIT

The cascade message defines the property to apply the cascading to - the
cascadeFilterPath is the property path to filter on and the optional cascadeMode
determines when to apply the cascading. Each message must end with a number that is used
to group the messages together. The numbering starts at 1 and must use increments of 1, so
if for example you want to define another cascade for the same attribute, that would look like
this:

Organization.cascade.2=[some other property to cascade]
Organization.cascadeFilterPath.2=[some other path]
Organization.cascadeMode.2=EDIT

4.6. Currency code

In message bundle:

currencyCode = [ISO 4217 currency code]

This setting can be used to specify that a numeric field (currently only supported for
BigDecimal properties) contains a currency value. If this setting is changed to a valid ISO 4217
currency code, then a currency symbol will be displayed in front of the value of the property.

If the specified currency code corresponds to a symbol (e.g, “$" for US dollar) then this
symbol will be used instead of the code.

4.7. Date type

In message bundle:

Dynamo: Reference documentation page 18 of 116

https://www.iso.org/iso-4217-currency-codes.html

dateType = LOCAL_DATE_TIME | INSTANT | DATE | TIME

The dateType setting can be used to determine how an attribute of type LocalTime,
LocalDate, LocalDateTime or Instant will be managed:

The allowed values are:

- LOCAL_DATE_TIME or INSTANT: In this case the application renders a date picker that
includes a time selection component.

- DATE: in this case the application renders a date picker without a time selection
component.

- TIME: in this case a custom time selection component is rendered.

By default, the value of the dateType setting is derived from the Java type of the property.
You do not normally have to manually override it.

Dynamo does not support the legacy Java date types (java.util.Date and java.sgl.Date).

4.8. Default search value

In message bundle:

defaultSearchValue = [String]

The defaultSearchValue setting can be used to set the default value that appears inside
an input component inside a search form. This is only supported for simple attributes like
strings and number, not for entities. It is only used when a single Ul component is rendered
for searching (as opposed to two components for specifying an upper or lower bound; in that
case use defaultSearchValueFromand defaultSearchValueTo)

You always specify this setting as a string; if the value must be converted to a decimal
number, use the period (*.") as the decimal separator. For enumeration values, use the upper-
case String representation of the desired value.

For date attributes, use the String representations according to the system properties
dynamoframework.defaults.date-format (dd-MM-yyyy),
dynamoframework.defaults.time-format (HH:mm:ss),
dynamoframework.defaults.date-time-format (dd-MM-yyyy HH:mm:ss).

4.9. Default search value from

In message bundle:

defaultSearchValueFrom = [String]

The defaultSearchValueFrom setting can be used to set the default value that appears as

Dynamo: Reference documentation page 19 of 116

the lower bound inside a user interface component inside a search form. This is only
supported for simple attributes like strings and number, not for entities. It is only used when
two input components (upper and lower bound) are rendered for the search, e.g., in case of a
numeric value or date range.

You always specify this setting as a String; if the value must be converted to a decimal
number, use the period (“.") as the decimal separator. For enumeration values, use the upper-
case String representation of the desired value.

For date attributes, use the String representations according to the system properties
dynamoframework.defaults.date-format (dd-MM-yyyy),
dynamoframework.defaults.time-format (HH:mm:ss),
dynamoframework.defaults.date-time-format (dd-MM-yyyy HH:mm:ss).

4.10. Default search value to

In message bundle:

defaultSearchValueTo = [String]

The defaultSearchValueTo setting can be used to set the default value that appears as
the upper bound inside a user interface component inside a search form. This is only
supported for simple attributes like strings and number, not for entities. It is only used when
two input components (upper and lower bound) are rendered for the search, e.g,, in case of a
numeric value or date range.

You always specify this setting as a String; if the value must be converted to a decimal
number, use the period (*.") as the decimal separator. For enumeration values, use the upper-
case String representation of the desired value.

For date/time attributes, use the String representations according to the system properties
dynamoframework.defaults.date-format (dd-MM-yyyy),
dynamoframework.defaults.time-format (HH:mm:ss),
dynamoframework.defaults.date-time-format (dd-MM-yyyy HH:mm:ss).

4.11. Default value

In message bundle:

defaultValue = [String]

The defaultValue setting can be used to set the default value that appears inside a user
interface component when creating a new entity. This is only supported for simple attributes
like Strings and numbers, not for entities.

You always specify this setting as a String; if the value must be converted to a decimal
number, use the period (“.") as the decimal separator. For enumeration values, use the upper-
case String representation of the desired value.

Dynamo: Reference documentation page 20 of 116

For date/time attributes, use the String representations according to the system properties
dynamoframework.defaults.date-format (dd-MM-yyyy),
dynamoframework.defaults.time-format (HH:mm:ss),
dynamoframework.defaults.date-time-format (dd-MM-yyyy HH:mm:ss).

4.12. Description

In message bundle:

description = [String]
The description setting determines the value of the tooltip that the user will see when
hovering over the input field for the property.

If not explicitly set, it will default to the value of the displayName setting.

This setting supports localization.

4.13. Display format

In message bundle:
displayFormat = [String]
The displayFormat setting indicates how date/time values will be formatted. It is

supported for attributes of a Java 8 date/time type (LocalDate, LocalTime, etc).

The value of the displayFormat attribute must be a valid Java data/time formatting
pattern, e.g, dd-MM-yyyy, but you can use different separators like dd/MM-yyyy or use
formats like yyyy-MM-dd.

If you do not explicitly specify a displayFormat for an attribute, the framework will default to
the value of the dynamoframework.defaults.date-format,
dynamoframework.defaults.time-format, dynamoframework.defaults.date-time-
format, or system variables depending on the dateType of the attribute model.

This setting supports localization.

4.14. Display name

In message bundle:
displayName = [String]

The displayName setting determines how the attribute will be named onscreen. By default,
it is derived from the name setting, replacing CamelCase notation by spaces and then

Dynamo: Reference documentation page 21 of 116

capitalizing individual words, e.g., mininumAge will be translated to “Minimum Age". You can
use the system property dynamoframework.capitalize-property-names and set it to
false so that only the first word will be capitalized.

This setting supports localization.

4.15. Download allowed

In message bundle:

downloadAllowed = true | false

The downloadAllowed setting indicates whether it is allowed to download files that were
uploaded using the file upload functionality. It defaults to falseWhen set to true, a
‘download" button will show up next to the preview of the image in a file upload component.

4.16. Editable type

In message bundle:

editable = READ_ONLY | CREATE_ONLY | EDITABLE | HIDDEN

The editableType setting specifies when an attribute can be edited. The default value
EDITABLE means that the attribute can be edited both when creating a new entity or when
editing an existing one. CREATE_ONLY means that the attribute can only be edited when
creating a new entity. READ_ONLY means that the property is read-only and cannot be edited
in the user interface.

The special value HIDDEN can be used in cases in which an attribute must be filled with a
value that is not directly entered inside the edit form but depends on another non-constant
value. e.g., you are in detail screen and have a reference to a parent object which must be set
on the new entity.

The values of properties that are set to EDITABLE or CREATE_ONLY will still be shown inside
edit forms, however it will not be possible to change the values.

4.17. Element collection mode

In message bundle:

elementCollectionMode = CHIPS | DIALOG

This setting specifies the type of component to use for editing an attribute of type
ELEMENT_COLLECTION. The default value, CHIPS, will result in a “chips” component (basically
a field that holds multiple tags). You can change this to DIALOG to render a component that
uses a popup dialog to enter additional values.

Dynamo: Reference documentation page 22 of 116

4.18. Email
This setting is not configurable using a message bundle.

The email setting can be used to specify that a field must contain a valid email address. It is
automatically set to true if the property is annotated with the @Email annotation (from the
Java validation framework).

4.19. Enum field mode

In message bundle:

enumFieldMode = DROPDOWN | RADIO

The enumFieldMode determines which input component to use when managing an attribute
of type ENUM. By default, the value DROPDOWN is used, which means that a dropdown field
(combo box) will be used. You can change this default by modifying the value of the system
property dynamoframework.defaults.enum-field-mode. When the value is changed to
RADIO a set of radio buttons will be used instead.

4.20. File name property

within a search form, this setting will be ignored, and a dropdown
component will always be used in order to save space.

In message bundle:

fileNameProperty = [property name]

The fileNameProperty setting can be used to specify the name of the property that is used
to store the name of an uploaded file after a file upload. This setting is intended to be used
on attributes of type LOB:

@Lob
@Attribute(image = true, fileNameProperty = "logo.fileName")
private byte[] image;

// hide in grid to prevent fetch issues

@Attribute(editableType = EditableType.READ_ONLY, visibleInGrid =
VisibilityType.HIDE)

private String fileName;

By default, if you define an attribute of type LOB, the application will render a file upload
component for editing this attribute. The byte content of the uploaded file will be stored in
the property itself, but the file name of the file that was uploaded will nhot be persisted.

Dynamo: Reference documentation page 23 of 116

If you want to store the file name as well, simply create another property (of type String) and
then point the fileNameProperty of the @Attribute annotation that is placed on the
property that holds the binary representation to this property. The framework will then store
the name of the uploaded file in this property as part of the file upload process.

The actual fileName property must be annotated as readOnly since it is automatically set
by the framework and does not need to be modified by the user.

If you don't specify a fileNameProperty for an attribute that is meant for file upload, the
upload and download will still work, however when downloading a file, it will be assigned a
default file name because the actual file name is unknown.

4.21. Group together with

In message bundle:

groupTogetherWith = [Comma separated list of attribute names]

The groupTogetherWith setting can be used to specify that the input components for
several attributes must be placed together on a single row in an edit form. This can be a good
way of saving screen space. The value of this setting consists of a list of attribute names. The
input components for these attributes will be placed behind the original attribute, in the order
in which they are defined.

Here you see an example of this for the region attribute:

@Attribute(visibleInForm = VisibilityType.SHOW, visibleInGrid =
VisibilityType.SHOW, searchable = true, groupTogetherWith =
{"region"})

private Country country;

And this is the input form that will be generated:

Country

Netherlands v Region Europe

Figure 1. Generated region form.

You can still use all available settings to modify the behaviour of the components for the
‘extra” attributes that are placed behind the first attribute. The framework makes sure that the
extra attributes do not show up more than once.

for this to work properly, the attribute that the groupTogetherWith setting

refers to must occur in the attribute order after the attribute that does the
e referring (for the example above, region must come after country). If this
rule is not observed, then an exception will be thrown and the component
will not be displayed properly.

Dynamo: Reference documentation page 24 of 116

4.22. Ilgnore in search filter

In message bundle:

ignoreInSearchFilter = true | false

This setting can be used for rare occasions in which you want to use an attribute inside a
search form (e.g., for setting up cascading) but you want to ignore the selected value when
actually performing a search.

4.23. Image

In message bundle:
image = true | false

This setting can be used on a LOB property to specify whether it represents an image. By
default, this setting has the value false. If set to true, the application will try to render a
preview image of the value (byte contents) of the property.

4.24. Lookup entity reference

In message bundle:
lookupEntityReference = [string value]

The lookupEntityReference setting can be used to specify the reference (unique
identifier) that is to be used when looking up nested entities. e.g., suppose that you have an
Organization entity that has an attribute Country. By default, when looking up countries (e.g.,
when filling a dropdown list), the default “Country” entity model will be used. If you want to
use a different entity model, you can specify this using this setting.

You can use the message bundle (entitymodel properties) to modify how this entity model
behaves.

4.25. Lookup query type

In message bundle:

lookupQueryType = PAGING | ID_BASED

The lookupQueryType setting can be used to specify the query type to use inside a popup
search dialog that is used inside a lookup field component.

Dynamo: Reference documentation page 25 of 116

4.26. Max collection size

The maxCollectionSize setting determines the maximum number of allowed elements in
an element collection, one-to-many relation, or many-to-many relation. Its value is derived
from the max value on the standard Java Validation @Size annotation.

4.27. Max length

In message bundle:

maxLength = [Integer value]

The maxLength setting can be used to specify the maximum allowed length of an attribute
of type String. This value is normally automatically derived from the @Size(max=<value>)
annotation.

It can also be used to set the maximum length of string values inside an element collection.
In this case, you must set the maxLength directly using the @Attribute annotation.

@ElementCollection(fetch = FetchType.LAZY)
@CollectionTable(name = "person_tags")
@Column(name = "tag")
@Attribute(visibleInForm = VisibilityType.SHOW, visibleInGrid =
VisibilityType.HIDE,

minLength = 4, maxLength = 12, elementCollectionMode =
ElementCollectionMode.DIALOG)

4.28. Max length in grid

In message bundle:

maxLengthInGrid = [Integer value]

The maxLengthInGrid setting can be used to set the maximum length of the value of a
String property when it is displayed inside a grid - if the value of the property is longer than
this, the value will be truncated after the first maxLengthInGrid characters. This can help
save space in grids.

4.29. Max value

In message bundle:

maxValue = [Integer value]

Dynamo: Reference documentation page 26 of 116

The maxValue setting can be used to specify the maximum value of a numeric attribute. This
value is automatically derived from the @Max annotation for Integer or Long fields.

It can also be used to set the maximum value of numeric values inside an element collection.
In this case, you must set the maxValue directly using the @Attribute annotation.

@ElementCollection(fetch = FetchType.LAZY)
@CollectionTable(name = "person_lucky_numbers")
@Column(name = "lucky_number")
@Attribute(visibleInForm = VisibilityType.SHOW, visibleInGrid =
VisibilityType.HIDE,

minValue = 10, maxValue
ElementCollectionMode.CHIPS)
@Size(max = 3)
private Set<@Min(10) @Max(value
new HashSet<>();

100, elementCollectionMode

100) Integer> luckyNumbers

4.30. Member type
This setting is not configurable using a message bundle.

The memberType setting can be used to explicitly set the member type (i.e. the type of an
individual entity) of an attribute type DETAIL. Normally, the member type can be derived
from the source code automatically, but there are certain cases in which this is not possible,
e.g.. when working with a property that does not directly map to a member field, but rather
returns a collection that is calculated on the fly. In this case, you can use the memberType to
set the exact type of the members of the collection.

This setting is only supported as an annotation override.

4.31. Min collection size

The minCollectionSize setting determines the minimum number of allowed elements in
an element collection, one-to-many relation, or many-to-many relation. Its value is derived
from the min value on the @Size annotation from the Java validation framework.

4.32. Min length

In message bundle:
minLength = [Integer value]

The minLength setting can be used to specify the minimum allowed length of an attribute of
type String. This value is automatically derived from the @Size (min=<value>) annotation.

It can also be used to set the minimum length of string values inside an element collection. In
this case, you must set the minLength directly on the @Attribute annotation.

Dynamo: Reference documentation page 27 of 116

@Column(name = "tag")
@Attribute(visibleInForm = VisibilityType.SHOW, visibleInGrid =
VisibilityType.HIDE,

minLength = 4, maxLength = 12, elementCollectionMode =
ElementCollectionMode.DIALOG)
private Set<@Size(min = 4, max = 12) String> tags = new
HashSet<>();

4.33. Min value

In message bundle:

minValue = [Integer value]

The minValue setting can be used to specify the minimum value for a numeric attribute. This
value is automatically derived from the @Min annotation.

It can also be used to set the minimum value of humeric values inside an element collection.
In this case, you must set the minValue directly using the @Attribute annotation.

@ElementCollection(fetch = FetchType.LAZY)
@CollectionTable(name = "person_lucky_numbers")
@Column(name = "lucky_number")
@Attribute(visibleInForm = VisibilityType.SHOW, visibleInGrid =
VisibilityType.HIDE,

minValue = 10, maxValue
ElementCollectionMode.CHIPS)
@Size(max = 3)
private Set<@Min(10) @Max(value
new HashSet<>();

100, elementCollectionMode

100) Integer> luckyNumbers

4.34. Multiple search

In message bundle:

multipleSearch = true | false

The multipleSearch setting can be used to allow searching on multiple values at once for
attributes of type MASTER. By default, the user would only be allowed to search on a single
value at a time for such attributes, but if you set this setting to true you will be allowed to
select multiple values (and the application will return all entities that match at least one of the
selected values). This will also change the component that is rendered by default from a
combo box to a multiple select field.

Dynamo: Reference documentation page 28 of 116

You can use the searchSelectMode to further modify the type of the search component
that is rendered (you can also use a lookup field by using the value LOOKUP).

@NotNull
@JoinColumn(name = "country_of_origin")
@ManyToOne(fetch = FetchType.LAZY)

@Attribute(searchable = SearchMode.ALWAYS, visibleInForm =
VisibilityType.SHOW, visibleInGrid = VisibilityType.SHOW,
multipleSearch = true, searchSelectMode =
AttributeSelectMode.LOOKUP, navigable = true)

private Country countryOfOrigin;

4.35. Navigable

In message bundle:

navigable = true | false

The navigable setting can be used to specify that a hyperlink for in-application navigation
must be rendered for a certain property. This works both in a grid and inside an edit form. This
is only supported for properties of type MASTER (i.e. many-to-one relations).

In order to use this form of navigation, you first need to set the navigable setting for the

property to true. This will then make the attribute values clickable inside results tables, and
inside a form that is in read-only mode.

4.36. Navigation link

In message bundle:
navigationLink = [String value]

The navigationlLink setting can be used to specify the path to use for intra-application
navigation (see also under navigable)’. By default, the application will use the name of the
referenced entity (with the first letter lower-cased) as the value of the navigation link, but this
can be modified by setting the navigation link. If this setting has a value that is not equal to
the empty string, then this setting will be used rather than the default.

4.37. Needed in data

In message bundle:

neededInData = true | false

Dynamo: Reference documentation page 29 of 116

The Dynamo framework only returns the attributes that are actually needed for displaying or
editing the entities to the front-end.In very rare occasions it can happen that there are
attributes that are not directly needed in the Ul but that are used as the input for certain other
(read-only) attributes.By default, the values of these attributes are not returned by the APLIn
these cases, you can set the neededInData setting to true in order to return these attribute
values anyway.

4.38. Number field mode

In message bundle:

numberFieldMode = TEXTFIELD | NUMBERFIELD

The numberFieldMode setting can be used to set the field mode to use for a numeric
property When set to TEXTFIELD application will render a text field.This field has input
validation so that only numbers can be entered.

When set to NUMBERFIELD, the application will render a text field with a pair of spinner
buttons that can be used to increase or decrease the value.

The default value of this setting can be modified by changing the system variable
dynamoframework.defaults.number-field-mode.

4.39. Number field step

In message bundle:

numberFieldStep = [Integer value]]
[source, properties]

The numberFieldStep setting can be used to set the step size to be used for a number field
(see section Number field mode). The default value is 1, but you can set this to any positive
integer.

4.40. Percentage

In message bundle:
percentage = true | false

The percentage setting is used to indicate whether a numeric value represents a
percentage. By default, this attribute has the value false. If set to true, the value of the
property will be displayed with a “%" sign following it, both in read-only and edit mode.

The percentage sign is purely cosmetic; the actual value of the property is not converted or
changed in any way.

Dynamo: Reference documentation page 30 of 116

4.41. Precision

In message bundle:

precision = [Numeric value]

The precision setting determines the number of digits will be shown behind the decimal
separator when displaying non-integer numbers. By default, it is set to 2, but you can change
this by changing the value of the system property dynamoframework.defaults.decimal-
precision.

4.42. Prompt

In message bundle:
prompt = [String]
The prompt setting determines the value of the prompt that shows up inside the editable

field for the attribute (in Angular/PrimeNG this is known as the “placeholder”)

If not set, it defaults to the value of the displayName setting.

4.43. Quick-add allowed

In message bundle:

quickAddAllowed = true | false

The quickAddAllowed setting can be used to allow the creation of entities directly from
inside a form, for a Ul component that is used to manage a MASTER or DETAIL relation.
Normally, in such a case a combo box, multi-select or similar component will be rendered
(depending on the value of the selectMode setting)

If you set the quickAddAllowed setting to true, an additional button will be rendered next
to the edit component for the property. When pressed, this button will bring up a dialog that
will allow the user to create a new entity.

When the user presses the OK button in this dialog, the framework will create a new entity
based on the contents of the dialog. This comes with an automatic check for duplicate
values, provided you have configured this on the underlying service.

As an example, consider the following:

@NotNull
@JoinColumn(name = "country_of_origin")
@ManyToOne(fetch = FetchType.LAZY)

Dynamo: Reference documentation page 31 of 116

@Attribute(visibleInForm = VisibilityType.SHOW, quickAddAllowed =
true, selectMode = AttributeSelectMode.LOOKUP)
private Country countryOfOrigin;

Here, we define a “countryOfOrigin” property that is of type “Country”. We set the
quickAddAllowed to “true. Once the user now starts the application, they will see an “Add"
button behind the field that can be used to create a new country. Once pressed, the button
will bring up the following dialog:

Maak een nieuwe Country aan

Code
Code
¢ Name
Name
Region

Region v

Figure 2. Quick add screen.

The user can now enter the properties of the country in the popup - once they press the “OK"
button the application will store the new Country, add it to the options that are present in the
selection component, and select it.

The application will carry out an automatic check for duplicates when the user tries to save
the entity (based on the findIdenticalEntity functionality), and will then look for an error

message stored under the <short name of entity>.not.unique key in order to
display an error message. e.g., in the example above, you should add a

"Country.not.unique message to the message bundle.

4.44. Replacement search path

In message bundle:
replacementSearchPath = [Desired string value]

The replacementSearchPath setting can be used to modify the search path that is used
when translating search filters into a query - it can happen that you are using a derived
property in your search screen (e.g. to allow searching on only a subset of values) and when
you take no further action this will produce an error when carrying out the query since the
property is not known in JPA. In cases like this, you can use the replacementSearchPath
setting to specify the alternate (real) path to use during the search.

The replacementSearchPath setting is managed completely in the back-end.

Dynamo: Reference documentation page 32 of 116

4.45. Replacement sort path

In message bundle:
replacementSortPath = [Desired string value]

You can use this setting to override the path to sort on when the user clicks on a column
header in a search results grid. By default, the application will then sort on the exact path to
the property, but if the replacementSortPath is set, that value will be used instead.

The replacementSortPath setting is managed completely in the back-end.

4.46. Required for searching

In message bundle:
requiredForSearching = true | false

The requiredForSearching setting determines if a property is required before a search
can be carried out inside a SearchLayout.” If you create a search form that contains
properties that have requiredForSearching set tot true, you will not be able to carry out a
search (i.e. the search button will be disabled) until you provide a search value for these
properties. Note that for an attribute for which two search fields will be rendered, at least one
of the fields must contain a value.

The default value of this setting is false.

4.47. Searchable

In message bundle:

searchable = NONE | ALWAYS | ADVANCED

The searchable setting determines whether a property will show up in a search form on a
search screen. By default, it is set to NONE which means it will not show up in a search form.
Setting this property to ALWAYS means it will always show up in a search form. Setting it to
ADVANCED means it will only show up in search forms for which the “advanced search” mode
has been enabled.

4.48. Search case-sensitive

In message bundle:

searchCaseSensitive = true | false

Dynamo: Reference documentation page 33 of 116

The searchCaseSensitive setting determines whether search operations on the attribute
are case-sensitive. The default is given by the system property
dynamoframework.defaults.search-case-sensitive which defaults to false. This
setting is only used for attributes of type String and ignored in all other cases.

On the attribute, you can use the values BooleanType TRUE and BooleanType.FALSE.

This setting is managed completely on the back-end.

4.49. Search date only

In message bundle:

searchDateOnly = true | false

The searchDateOnly setting determines whether search operations on an attribute that
represents a date/time (either LocalDateTime or an Instant) are carried out using only date
selection fields rather than time selection fields.

By default, when searching on a date/time attribute, the application will render two
timestamp search fields that allow you to specify a search interval. When you change this
setting to true then instead the application will render to date selection fields. Searching
using these date selection fields will return any time stamps that fall within the specified date
interval (inclusive). e.g., if you enter the search values 2020-04-04 to 2020-04-06 you will
return any records for which the time stamp value matches the interval from 20260-04-04
00:00:00 up to 2020-04-06 23:59:599999999

4.50. Search for exact value

In message bundle:

searchForExactValue = true | false

This setting determines whether to search for an exact value rather than a range, when
searching for numeric or date values. By default, for such a field two search fields will be
rendered: one for the lower bound of the range to search for, and one for the upper bound of
the range to search for.

By default, this setting has the value false. If set to true, then instead of the two search
fields, a single field will be rendered that allows the user to search for an exact value.

4.51. Search prefix only

In message bundle:

searchPrefixOnly = true | false

Dynamo: Reference documentation page 34 of 116

The searchPrefixOnly setting determines whether search operations on the property
check only for a prefix match. If this is set to true, then searching for e.g, “a" will only match
‘almond” ("a" appears at start) but not “walnut” ("a" appears in the middle). If set to false, then

a" will match both “almond" and “walnut”.

By default, this setting has the value false. This setting is only used for attributes of type
String and ignored in all other cases.

This setting is managed completely on the back-end.

4.52. Search select mode

In message bundle:

searchSelectMode = AUTO_COMPLETE | COMBO | LOOKUP | MULTI_SELECT

The searchSelectMode setting is used to specify how the component for searching an
attribute of attribute type MASTER or DETAIL will be rendered (inside a search form).

By default, the value of the searchSelectMode setting is equal to the value of the
selectMode, but you can change it explicitly if you want a different component to be
rendered inside a search form.

The following restrictions apply:

- For a property of type MASTER you can use the values COMBO, LOOKUP or
AUTO_COMPLETE.

- For a property of type DETAIL you can use the values LOOKUP and MULTI_SELECT

Depending on the type of component that is selected, different calls to the back-end will be
performed:

- For select mode COMBO, if no field filter is applied, a call to the ‘list" endpoint (GET
/api/dynamo/crud/<entityName> is performed. This will simply result a sorted list of
all the known entities of the requested type. Use this with care as it is a bad idea to use
this for large collections

- For select mode COMBO,” if a field filter is applied, a call to the “search” endpoint (POST
/api/dynamo/crud/<entityName>/search is performed. This will result in a list of
entities that match the provided field filter, restricted to a maximum of 100 results.

- For select mode AUTO_COMPLETE, a <call to the search endpoint (POST
/api/dynamo/crud/<entityName>/search) is performed, using a search filter based
onthe displayProperty of the entity and the value entered by the user.

- For select mode LOOKUP, initially no search is performed. Instead, the user can press a
button to bring up a search dialog which can be used to perform a search.

Dynamo: Reference documentation page 35 of 116

4.53. Select mode

In message bundle:

selectMode = AUTO_COMPLETE | COMBO | LOOKUP | MULTI_SELECT

The selectMode setting is used to specify how the component for selecting an attribute of
type MASTER or DETAIL will be rendered (inside an edit form).

The following restrictions apply:
- For a property of type MASTER you can use the values COMBO, LOOKUP or
AUTO_COMPLETE.
- For a property of type DETAIL you can use the values LOOKUP and MULTI_SELECT.

Depending on the type of component that is selected, different calls to the back-end will be
performed:

- For select mode COMBO, if no field filter is applied, a call to the ‘list" endpoint (GET
/api/dynamo/crud/<entityName> is performed. This will simply result a sorted list of
all the known entities of the requested type. Use this with care as it is a bad idea to use
this for large collections.

- For select mode COMBO, if a field filter is applied, a call to the "search” endpoint (POST
/api/dynamo/crud/<entityName>/search is performed. This will result in a list of
entities that match the provided field filter, restricted to a maximum of 100 results.

- For select mode AUTO_COMPLETE, a <call to the search endpoint (POST
/api/dynamo/crud/<entityName>/search) is performed, using a search filter based
onthe displayProperty of the entity and the value entered by the user.

- For select mode LOOKUP, initially no search is performed. Instead, the user can press a
button to bring up a search dialog which can be used to perform a search.

4.54. Sortable

In message bundle:

sortable = true | false

The sortable setting can be used to specify whether a grid can be sorted on the attribute. By
default, it is set to true for all attributes.

4.55. Text field mode

In message bundle:

textFieldMode = TEXTAREA | TEXTFIELD | PASSWORD

Dynamo: Reference documentation page 36 of 116

The textFieldMode setting can be used to specify whether to render either a text field, a
text area or a password field for editing an attribute of type String. The default is TEXTFIELD.
The value TEXTAREA will be ignored inside a search form. The value PASSWORD will be
ignored inside a search form.

4.56. Trim spaces

In message bundle:

trimSpaces = true | false

This indicates whether extraneous space characters will be trimmed from the start and end
of the input inside text areas and text fields. This defaults to false but can be modified by
changing the value of the defaults to false but can be modified by changing the value of the
dynamoframework.defaults.trim-spaces system property.

On the @Attribute annotation, you can use the trimSpaces setting which supports the
values INHERIT, TRIM and NO_TRIM. When INHERIT is used, it will just use the value of the
system property. With TRIM and NO_TRIM you can either enable or disable the trimming for
this specific attribute.

4.57. True and false representation

In message bundle:

trueRepresentation = [desired value]
falseRepresentation = [desired value]

The trueRepresentation and falseRepresentation settings can be used to modify
how a Boolean value is displayed in read-only mode. By default, such a value will simply be
displayed as true or false, but this can be overruled by setting respectively the
trueRepresentationand falseRepresentation values.

This setting does nothing in edit mode, since in that case a checkbox or toggle button will be
rendered.

4.58. URL

In message bundle:

url = true | false

The url setting can be used to specify that a certain String property must be rendered as a
clickable URL.

The default value is false. If set to true, then a validator will be added to the field (when in

Dynamo: Reference documentation page 37 of 116

edit mode) that checks if the entered value is a valid URL (must start with http or https). Also,
in view mode the framework will render a clickable URL containing the value of the attribute
- when clicked it will open the provided URL in a separate browser window.

4.59. Visible in form

In message bundle:
visibleInForm = true | false | SHOW | HIDE

The visibleInForm setting determines whether a property will be displayed inside an edit
form. It is not to be confused with the visibleInGrid attribute that governs whether a
property shows up in a grid.

By default, all simple properties will have visibleInForm set to true. All complex (master
and detail) properties will be hidden by default.

Instead of true you can also use the value SHOW and instead of false you can also sue the
value HIDE.

4.60. Visible in grid

In message bundle:
visibleInGrid = true | false | SHOW | HIDE
The visibleInGrid setting determines whether a property will be displayed in a search

results grid.

By default, all simple properties will have visibleInGrid set to true. All complex (master
and detail) properties will be hidden by default.

Instead of true you can also use the value SHOW and instead of false you can also sue the
value HIDE.

Dynamo: Reference documentation page 38 of 116

5. Attribute ordering and grouping

5.1. Attribute ordering

In message bundle:

attributeOrder = [Comma separated list of attribute names]

By default, the properties of an entity will be displayed in the order in which they appear in
the Java class file. This can be overruled by using an @AttributeOrder annotation or
setting the attributeOrder via the message bundle.

The @AttributeOrder annotation takes a single parameter, named attributeNames
which contains an array of field names - the order in which the attributes appear in the array
is the order in which they will appear in the application.

@AttributeOrder(attributeNames = { "name", "headQuarters",
"address", "countryOfOrigin", "reputation" })
public class Organization extends AbstractEntity<Integer> {

You can achieve the same effect by including a message like
Organization.attributeOrder=name, headquarters, address, countryOfOrigin, r
eputation in the message bundle (use commas to separate the values). The message in the
bundle will overwrite the ordering set by @AttributeOrder. If your entity has a large
number of attributes this might get a bit unwieldy though.

The ordering does not have to contain all properties; if you leave out any attributes, then
those will be placed (in the normal order) after any attributes that are explicitly mentioned in
the annotation or the message bundle.

5.2. Grid and search form attribute ordering

Also by default, the attribute order in a search form and in results grid is the same as the
default attribute order (see the previous paragraph). You can override this by using the
@GridAttributeOrder and @SearchAttributeOrder annotations.

@GridAttributeOrder(attributeNames = { "name", "headQuarters",
"address", "countryOfOrigin", "reputation" })
@SearchAttributeOrder (attributeNames = { "name", "headQuarters",
"address", "countryOfOrigin", "reputation" })

public class Organization extends AbstractEntity<Integer> {

These annotations do the following:

- GridAttributeOrder sets the order of the attributes in the search results grid for the
SearchlLayout and the SplitLayout.

Dynamo: Reference documentation page 39 of 116

« SearchAttributeOrder set the order of the attributes in the search form for the
SimpleSearchLayout and in popup search screens.

These additional attribute orders completely overwrite the default attribute order, so you will
have to redefine all attributes in the order you want to see them. Any attributes that are not
explicitly mentioned are included at the end in alphabetical order.

You can also overwrite these orders using the message bundle:

Organization.searchAttributeOrder=name, headquarters, address, count
ryOfOrigin, reputation

Organization.gridAttributeOrder=name, headquarters, address, country
0fOrigin, reputation

5.3. Attribute grouping

In addition to ordering the attributes, they can also be grouped together. To do this, you can
include an @AttributeGroups annotation on your class definition, which can in turn include
any number of @AttributeGroup annotations.

Each @AttributeGroup annotation contains the name of the group and an array that
contains the names of the properties that must be included in the group. As an example,
consider:

@AttributeGroup(messageKey = "Organization.first", attributeNames
= { "name", "address", "headQuarters", "countryOfOrigin" }),
@AttributeGroup(messageKey = "Organization.second",
attributeNames = { "reputation" })

@AttributeOrder(attributeNames = { "name", "headQuarters",
"address”, "countryOfOrigin", "reputation" })

public class Organization extends AbstractEntity<Integer> ({

The above defines two attribute groups identified by the message keys
Organization.first and Organization.second. The display names of the groups can
be defined in the message bundle:

Organization.first=First
Organization.second=Second

When you want to achieve the same using a message bundle, you can do this in the
following way:

Organization.attributeGroup.1.messageKey=0rganization.first
Organization.attributeGroup.1.attributeNames=name, address, headqua
rters,country0OfOrigin

Dynamo: Reference documentation page 40 of 116

Organization.attributeGroup.2.displayName=0rganization.second
Organization.attributeGroup.2.attributeNames=reputation

l.e. you include two messages for every attribute group: one containing the message bundle
key and one containing the attribute names as a list of comma-separated attribute names.
The messages are numbered starting at “1".

The attribute grouping is only used to determine which properties to group together, not to
determine the order in which the attributes appear within this group. This order is still
determined by the @AttributeOrder annotation as described earlier.

When you want to refer to a certain attribute group in your code, you should do so by using
the (unique) message key of that group.

Dynamo: Reference documentation page 41 of 116

6. Advanced entity model topics

6.1. Nested entity models

The Dynamo framework supports dealing with nested entities. When Dynamo generates an
entity model for an entity, it automatically creates nested entity models for all complex
properties it encounters. This is currently supported up to three levels deep. The models are
constructed lazily when needed.

The entity model that is created for a nested entity is a separate model from the top-level
model for the entity. So, the direct model for the “Address” entity is a different model than the
nested model for Person.address.

Some settings behave differently for nested entity models. e.g., for any properties of nested
entities, the searchable and visibleInGrid settings will be set to false by default.

You can override settings on nested attribute models in the same way as you can override
attributes of non-nested entities, i.e. by including a message in the message bundle that
contains the full path to the property (eq.,
Movie.director.name.displayName=Director Name).

6.2. Element collections

The entity model framework also supports dealing with “element collection” properties, i.e.
properties that are collections of simple types (currently String, Integer, Long and BigDecimal
are supported) and that are annotated with the @E1lementCollection annotation.

For these properties, the application will automatically generate either a chips component or
a dialog component (depending on the value of the elementCollectionMode setting) that
allows you to add items to, remove items from, and modify items in the collection. You can
use the minLength and “maxLength settings to modify the minimum allowed length and
maximum allowed length of the individual items (in case of a collection of Strings), or use the
minValue and maxValue settings to define a minimum or maximum value for a collection of
numeric values.

The @Size annotation (from the Java validation framework) can be used to restrict the
minimum and maximum number of elements that are allowed in the collection as a whole.

Lucky Numbers

33® 44 & 55 ®

Figure 3. An example of a “chips” component used to manage an element collection.

Dynamo: Reference documentation page 42 of 116

7. Data access, service layers and general concepts

7.1. Data access layer and entities

Dynamo has certain requirements regarding the Data Access layer and Entity classes that are
used in applications developed with the framework.

All Entity classes (i.e. classes that map to a table in the database) must inherit from the
AbstractEntity class. This means that they inherit a version field (used for optimistic
locking) and an id field that denotes the technical primary key. The type of this id field is
configurable via the type parameter of the AbstractEntity class.

An example Entity class looks like this:

@Entity
@Model(displayProperty = "name"
@Table(name = "organization")

public class Organization extends AbstractEntity<Integer> {

In principle, it is allowed to use inheritance when defining entities. However, be careful when
using abstract superclasses: their use is currently only allowed when the abstract superclass
itself is not directly exposed via the REST services. This is because the REST serialization and
deserialization process cannot properly deal with abstract classes.

For every Entity class, you must (normally) create a Data Access Object (DAO) interface and
the accompanying implementation. The DAO must inherit from the BaseDao interface;

public interface OrganizationDao extends BaseDao<Integer,
Organization> {

}

And the implementation must inherit from BaseDaolmpl:

@Repository("organizationDao")
public class OrganizationDaoImpl extends BaseDaoImpl<Integer,
Organization> implements OrganizationDao ({

private QOrganization qOrganization = QOrganization
.organization;

@Override
public Class<Organization> getEntityClass() {
return Organization.class;

}

@Override

Dynamo: Reference documentation page 43 of 116

protected EntityPathBase<Organization> getDslRoot() {
return qOrganization;

}

The minimal implementation contains just two methods: getEntityClass() which returns
the type of the entity that is managed by the DAO, and getDs1Root() which returns the
QueryDSL root.

QueryDSL is a framework that is used by the Dynamo Framework to create type-safe queries.
Basically, what QueryDSL does is create a QueryDSL class for every entity class in your
application. When developing in Eclipse or Intellij, the IDE will automatically generate the
appropriate classes. You can also run a command line Maven build to generate them.

Finally, note that the DAO implementation class is annotated with @Repository, which will
register it as a Spring bean (it also has additional functionality in Spring Data, but Dynamo
does not currently use the Spring Data library).

7.2. Service

In addition to developing a DAO for your entity, you must also create a service class. This
service class in its most basic form will serve as a delegate to the DAO, but it is also the place
where you can place business logic.

The declaration of a service interface is very easy; the service must extend BaseService.

@Service("organizationService")
public class OrganizationServiceImpl extends BaseServiceImpl
<Integer, Organization> implements OrganizationService {

@Autowired
private OrganizationDao dao;

@0verride
protected BaseDao<Integer, Organization> getDao() {
return dao;

}

You can define a service by extending the BaseServiceImpl class and inject the
appropriate DAO. This DAO must also be returned by the getDao() method. Note that the
service must be annotated with @Service, registering it as a Spring service.

By default, the methods of the service that manipulate data (basically, save() and delete()
are already annotated with the @Transactional annotation (from the Spring framework). If
you add any methods yourself that also need an active transaction, you either have to mark
these methods (in the service implementation class) as transactional. Alternatively, you can
place the @Transactional annotation on the service implementation subclass in order to

Dynamo: Reference documentation page 44 of 116

make all methods in that service transactional.

7.3. Fetching and paging

The Dynamo framework is built around the concept of fetching data (using fetch join queries)
whenever possible. The philosophy behind this is that it is usually much faster to fetch all
required data using a single query than performing numerous smaller queries to achieve the
same result.

For this reason, we recommend to keep the use of eager fetching to an minimum and use
lazy fetching combined with fetch joins whenever possible.

The framework supports several methods that make it possible to fetch data based on a
primary key or collection of keys, and also allow you to specify with relations to fetch as part
of the query.

Note e.g., the following method defined in BaseService:

public T fetchById(ID id, FetchJoinInformation... joins);

As you can see, this method accepts a vararg parameter that specifies which relations to
fetch. If left empty, the application will use the default setup, which you can specify by using
the @FetchJoins annotation on an entity class.

@FetchJoins(joins = {@FetchJoin(attribute = "countryOfOrigin"),
@FetchJoin(attribute = "mainActivity")},

detailJoins = {@FetchJoin(attribute = "countryOfOrigin"),
@FetchJoin(attribute = "neighbourhoods")})
public class Organization extends AbstractEntity<Integer> ({

This means that whenever you perform a fetch query (for multiple entities) using a standard
service method, and you do not explicitly specify which relations to fetch, all relations
specified by the “joins" property will be returned.

When performing a query to fetch just a single entity (and its relations), the detailJoins will
be used instead.

The consequence of this is that the joins setting should normally contain the relations that
you want to display in a results table, whereas the detailJoins should contain the relations
that you want to display inside an edit form.

When declaring a @FetchJoin, you can specify the type of join. The default is LEFT JOIN
which means that the entity will be returned even if the relation to fetch is empty. You can
change this to INNER. This will often improve performance but only used this if it relation you
are fetching is mandatory and thus always present.

Take care not to include any substantially large relations, since this can lead to poor
performance.

Dynamo: Reference documentation page 45 of 116

If you create a component that contains a tabular display of data, you can specify the way in
which the data will be retrieved. There are two options here:

- ID_BASED - As described above. The application will execute a query that will retrieve
the primary keys of the entities to be displayed, followed by a query that fetches a
number of these entities (and their relations) based on these primary keys and information
about which relations to fetch.

+ PAGING - The application will first execute a query to determine the amount of entities,
and will then use a paging query (using firstResults and maxResults) to retrieve a
subset of the desired entities). This approach supports the fetching of associated
relations, but take care that you must only fetch many-to-one or one-to-one relations in
this fashion. This is because if you fetch one-to-many or many-to-many relations, the
result set will contain multiple rows per entity, which clashes with the firstResults and
maxResults settings and will cause the underlying ORM provider to retrieve the entire
data set first and do the filtering in memory. This is often very inefficient.

In both cases, the grid is filled lazily - only a small subset of the available data will be
retrieved. The best approach depends on the situation - if you have a large data set and no
relations to fetch then paging is preferred. If you have a lot of relations to fetch (or if you must
fetch any one-to-many or many-to-many relations), use the ID-based approach.

In addition to defining the joins using the @FetchJoin annotation, it is also possible to
configure the joins in the entitymodel.properties message bundle.

This is done as follows:

[EntityModelReference].[join|detailJoin] . [number].attribute=
[name of the attribute]
[EntityModelReference].[join|detailJoin].[number].joinType= LEFT
| RIGHT | INNER

Some clarifications:
1 You can use join to define joins that are used when fetching multiple entities and
"detailUoin” to define joins that are used when fetching single entities;
2. Joins (per type) are numbered, starting with 1;

3. Use attribute to specify the name of the attribute.
To set up two joins for the Organization entity, you can do the following:
Organization.join.1.attribute=mainActivity
Organization.join.1.joinType=LEFT

Organization.join.2.attribute=neighbourhoods
Organization.join.2.joinType=LEFT

And to define three joins to be used when fetching a single entity:

Dynamo: Reference documentation page 46 of 116

Organization.detailJoin.
Organization.detailJoin.
Organization.detailJoin.
Organization.detailJoin.
Organization.detailJoin.
Organization.detailJoin.

.attribute=mainActivity
.joinType=LEFT
.attribute=neighbourhoods
.joinType=LEFT
.attribute=countryOfOrigin
.joinType=INNER

W WNN= =

7.4. Entity initialization

As you have seen before, it is possible to set default values for simple attributes.These
default values are applied on the client side when creating a new entity.As an alternative to
using these default values, you can also create an entity with default values in the back-end.

In order to do this, override the initialize() method in the implementation of the entity's
service.ln this method you can initialize the entity with all the desired default values.This is
especially useful when creating entities with nested collections.

@0verride
public ServiceStaff initialize() {
ServiceStaff staff = super.initialize();

staff.setStartDate(LocalDate.now());

for (ServiceStaffDayType weekDay : ServiceStaffDayType.
values()) {
ServiceStaffAvailability ssa = new
ServiceStaffAvailability();
ssa.setDay(weekDay) ;
ssa.setStartTime(LocalTime.of(8, 0));
ssa.setEndTime(LocalTime.of (21, 0));
ssa.setAvailable(true);
staff.addServiceStaffAvailability(ssa);

}
return staff;
}
7.5. REST API

By default, you do not need to make any changes to the REST API offered by the Dynamo
framework in order to be able to use an entity in the front-end - as long as you properly
create an entity class, a DAO, and a service as described above, the endpoints for creating,
updating and searching this entity will be made available by the framework - you should
simply be able to create a component in the user interface that refers to the new entity, and
all endpoints will work out of the box.

Dynamo: Reference documentation page 47 of 116

7.5.1. The default endpoints

There are six endpoints that Dynamo supplies by default.

Endpoint ________________Jpescriptn

/api/dynamo/autofill The endpoint for the autofill controller
/api/dynamo/crud The endpoint for the crud controller
/api/dynamo/export The endpoint for the export controller
/api/dynamo/files The endpoint for the file controller
/api/dynamo/model The endpoint for the model controller
/api/dynamo/status The endpoint for the status controller

Table 1. Default Dynamo REST endpoints.

7.5.2. Changing the standard Dynamo endpoints

The REST endpoints used by dynamo can be configured using properties. See Prefix
dynamoframework.defaults.endpoints for the settings and their default values.

A

7.6. Validation

The front-end code needs to be updated/regenerated when the endpoints
are changed. See Code generation on how to do this.

The validation functionality offered by the Dynamo Framework are based on the JSR 303
(Bean Validation) standard: to express validation rules, simply use the standard annotations
(@NotNull, @Size, @Min, etc.) on the properties of your entity.

You can also use @AssertTrue and @AssertFalse to express more complex (inter-field)
validation rules, or write your own validations by implementing the ConstraintValidator
interface. To use @AssertTrue or @AssertFalse, create a method on the entity class that
returns a Boolean, then annotate that method with either of these annotations - during the
validation process these methods will be executed and if the return value does not match the
value expected by the annotation then a validation error will be reported.

Custom validation messages can be included in the ValidationMessages.properties message
bundle.

When you save an entity (by calling the service method save()), it is automatically validated
against these validation rules, and an OCSValidationException will be thrown if any of the
validations fail.

If you need to perform any custom validations for a certain entity class, you can do so by
overriding the validate () method in the Service implementation class for that entity.

The settings that are relevant for validation will also be exposed via the entity model API to
the front-end, and will be used to create the appropriate Angular validators. The following
validators are supported:

Dynamo: Reference documentation page 48 of 116

+ Minimum and maximum value (for numeric attribute)

+ Minimum and maximum length (for String attributes)

- Email validation (for String attributes annotated with @Email)
+ URL validation (for String attributes annotated with @URL)

- Required validator (all type of attributes)

+ Minimum and maximum collection size (many-to-many and one-to-many relations,
element collections).

When the user submits a form, the validators mentioned above will be executed, and if any
of them fail the form will not be submitted to the back-end.

If all validations pass on the front-end, a call to the back-end will be performed. In the back-
end, the same validations will be performed again, possible augmented with any custom
validations defined exclusively in the back-end. In case any of these validations fail, the call
will be rejected and a validation error message will be shown.

Unfortunately, it is not possible to automatically replicate the custom back-end validations in
the front-end. However, it is possible to replicate the validations by using custom validators.
This will be covered in more detail later in this manual.

7.7. Checking for identical entities

There is one additional feature with regard to validation that we must mention here. In case
you have an entity that contains a logical primary key (either a single field or a combination of
fields) the framework provides an easy way to check for possible duplicates. To do so, you
only have to override the findIdenticalEntity() method from the BaseServiceImpl in
your service implementation class.

This method takes an entity as its only parameter; inside the method body, you can perform
any query to check if there already is an entity that has the same values for the unique field
or combination of fields. If the method returns a non-null value, then the framework will
throw an OCSValidationException as part of the validation process.

Consider the following example that checks if there already is an organization with the same
name as the organization you are trying to save (which is passed as a parameter to the
method):

@Override

protected Organization findIdenticalEntity(Organization entity) {
return dao.fetchByUniqueProperty(“name", entity.getName(),

false);

}

You do not have to check if the entity being returned is equal to the entity
being validated, the framework will take care of this for you.

Dynamo: Reference documentation page 49 of 116

7.8. Default services and DAOs

It can happen that you have a very simple entity for which you will only need the default
methods provided by BaseService. If this is the case, then you do not have to go through
the trouble of creating a DAO and Service class. Instead, you can configure a
DefaultServiceImpl and/or DefaultDaoImpl in a configuration class. This looks as
follows:

@Bean
public BaseDao<Integer, Region> regionDao() {
return new DefaultDaoImpl<>(QRegion.region, Region.class);

}

@Bean
public BaseService<Integer, Region> regionService(BaseDao<
Integer, Region> regionDao) {

DefaultServiceImpl<Integer, Region> regionService = new
DefaultServiceImpl<>(regionDao, "code");

return regionService;

Y

As you can see, you can configure a bean that is an instance of DefaultServiceImpl and
supply the necessary arguments to the constructor. This includes:

- An instance of DefaultDaoImpl. This in turn has two (or three) constructor arguments,
namely:
The QueryDSL base class (the QEntity class)
The entity class.

Optionally, the names of the properties to fetch when performing a fetch query (these
will always be fetched using a left join).

- Optionally, the name of the properties for which the values must be unique. You can use
a comma-separated list to specify multiple properties, e.g., code, name means that both
the code and name properties must be unique.

- Optionally, a boolean parameter that indicates whether the search for the unique value is
case-sensitive (defaults to false).

After you have configured a service like this, you can inject it into your code as follows.Note
that an @Qualifier annotation that matches the name of the bean is required:

@Autowired
@Qualifier("countryService")
private BaseService<Integer, Country> countryService;

Dynamo: Reference documentation page 50 of 116

8. Configuration

Dynamo supports several ways of dealing with (system) properties in order to configure the
behaviour of the framework.

The easiest way of declaring a property is by including it in the application.properties or
application.yml file which is located in the src/main/resources directory. This is the standard
file used by Spring Boot, and as such you can add both your own system properties to it, as
well as using it to modify any Spring Boot settings.

You can use the default mechanisms offered by Spring Boot (e.g., external configuration file,
explicitly set system parameters, using profiles) to override the values.

The Dynamo Framework manages all properties using @ConfigurationProperties. In the
next sections an overview of all available properties is given. In the section title the prefix is
given for the properties in the tables.

For instance, to set the default date-format to yyyy-MM-dd, configure it like this in a
properties file:

dynamoframework.defaults.date-format=yyyy-MM-dd
If you use a yaml file, use:

dynamoframework :
defaults:
date-format: yyyy-MM-dd

8.1. Prefix dynamoframework

Class: org.dynamoframework.configuration.DynamoConfigurationProperties

bedrock BedrockPrope Bedrock properties
rties
capitalize- Boolean Indicates whether to true
property- capitalize individual words in
names

property hames

Csv CsvProperties Properties related to csv,
import and export

defaults DefaultProper Default properties
ties

ollama OllamaProper Ollama properties
ties

Dynamo: Reference documentation page 51 of 116

openai OpenAiProper OpenAl properties

ties
unaccent- String The name of the database
function- function used to replace
name accents
vertexai VertexAiPrope VertexAl properties

rties

Table 2. Properties for dynamof ramework.

8.2. Prefix dynamoframework.ollama

Class:
org.dynamoframework.configuration.DynamoConfigurationProperties$0llamaC
onfigurationProperties

enabled Boolean Enable Ollama false
model String The model to use 1lama3
url String Ollama URL

Table 3. Properties for dynamof ramework.ollama.

8.3. Prefix dynamoframework.openai

Class:
org.dynamoframework.configuration.DynamoConfigurationProperties$SOpenAiC
onfigurationProperties

api-key String The OpenAl APl key

enabled Boolean Enable OpenAl false
max-tokens |nteger Maximum number of tokens ~ 4096

model String The model to use gpt-4-turbo

Table 4. Properties for dynamof ramework .openai

8.4. Prefix dynamoframework.defaults

Class:
org.dynamoframework.configuration.DynamoConfigurationPropertiesSDefault
ConfigurationProperties

ai-service String The default Al service

Dynamo: Reference documentation page 52 of 116

boolean-
field-mode

date-format

date-time-
format

decimal-
precision

element-
collection-
mode

endpoints

enum-field-
mode

false-
representat
ion

false-

representat
ions

entityClass
PathScan

false-
representat
ion

false-

representat
ions

group-
together-
mode

group-
together-
width
locale

nesting-
depth

number -
field-mode

search-
case-
sensitive

AttributeBool
eanFieldMode

String
String

Integer

ElementColle
ctionMode

EndpointProp
erties

AttributeEnu
mFieldMode

String
Map<String,St
ring>

Boolean

String

Map<String,St
ring>

GroupTogeth
erMode

Integer

Locale

Integer

NumberField
Mode

Boolean

Indicates the default mode to
use for boolean components

The default date format

The default date/time (time
stamp) format

dd-MM-yyyy
dd-MM-yyyy HH:mm:ss

The default decimal precision 2

Indicates the default mode to
use for element collection
fields

The configuration of the
Dynamo endpoints

The default field type to use
for enumeration attributes

The representation of the false

value false

Localized representations of
the value false

Whether to scan the class true

path for entities

The representation of the false

value <code>false</code>

Localized representations of
the value
<code>false</code>

The default group together
mode

The column width from 300

grouping together

The default locale

The default nesting depth 2

The default number field
mode

The default case false

sensitiveness for search

Dynamo: Reference documentation

page 53 of 116

search- Boolean Whether search is prefix only false
prefix-only
time-format String The default time format HH:mm:ss
trim-spaces Boolean Whether to trim white space false
for text inputs
true- String The representation of the true
ion
true- Map<String, St Localized representations of
representat rings, the value true
ions
use-prompt- Boolean Indicates whether to use the true
value display name as the input
prompt by default

Table 5. Properties for dynamoframework .defaults,

8.5. Prefix dynamoframework.defaults.endpoints

Class:
org.dynamoframework.configuration.DynamoConfigurationPropertiesSDefault
ConfigurationPropertiesSEndpointConfigurationProperties

autofill String The endpoint for the autofill ~ /api/dynamo/autofill
controller

crud String The endpoint for the crud /api/dynamo/crud
controller

export String The endpoint for the export ~ /api/dynamo/export
controller

files String The endpoint for the file /api/dynamo/file
controller

model String The endpoint for the model ~ /api/dynamo/model
controller

status String The endpoint for the status ~ /api/dynamo/status
controller

Table 6. Properties for dynamoframework .defaults.endpoints

8.6. Prefix dynamoframework.bedrock

Class:
org.dynamoframework.configuration.DynamoConfigurationProperties$Bedrock
ConfigurationProperties

Dynamo: Reference documentation page 54 of 116

access-key String Access key

access- String Access secret

secret

enabled Boolean Enable Bedrock false
model-id String Model id

region String Region

Table 7. Properties for dynamoframework .bedrock.

8.7. Prefix dynamoframework.vertexai

Class:
org.dynamoframework.configuration.DynamoConfigurationPropertiesSVertexA
iConfigurationProperties

enabled Boolean Enable VertexAl false

model String The model to use gemini-1.5-flash-
preview-0514

project-id String The project id

project- String The region of the project europe-west1

region

Table 8. Properties for dynamoframework.vertexai.

8.8. Prefix dynamoframework.csv

Class:
org.dynamoframework.configuration.DynamoConfigurationPropertiesSCsvConf
igurationProperties

escape-char char The CSV escape character
when importing/exporting
Mmax-rows- |nteger The number of rows that 1000
before- must be present in a result
Ll set before resorting to a
streaming approach for Excel
export
quote-char char The CSV quote char when !
importing/exporting
separator- char The CSV separator when ;
char importing/exporting

Dynamo: Reference documentation page 55 of 116

thousands- Boolean Whether to use thousands false
grouping grouping in XLS files

Table 9. Properties for dynamoframework.csv.
You can retrieve the Dynamo properties using the DynamoPropertiesHolder in the

following way:

DynamoProperties properties = DynamoPropertiesHolder
.getDynamoProperties();

Dynamo: Reference documentation page 56 of 116

9. Project set-up

9.1. Back-end set-up

Back-end applications that want to use the Dynamo framework are fairly standard Spring
Boot applications. Below is a sample pom.xml file that shows the minimal set-up for a
Dynamo back-end.

Replace the placeholders between square brackets by your own values

This example POM also does not include any database drivers. This means you will likely
need to add your own database driver (e.g., Postgresql).

It also does not contain any dependencies for setting up application security, however the
three dependencies that you need to set up Spring security based on OAuth are included in
the pom but commented out.

<?xml version="1.0" encoding="UTF-8"7?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.6.0
https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>3.3.2</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<groupId>[YOUR GROUP ID]</groupId>
<artifactId>[YOUR ARTIFACT ID]</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>[YOUR NAME]</name>
<properties>
<java.version>21</java.version>
<dynamo.version>4.0.0-RC2</dynamo.version>
</properties>
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
<dependencies>

Dynamo: Reference documentation page 57 of 116

<dependency>
<groupId>org.dynamoframework</groupId>
<artifactId>dynamo-rest</artifactId>
<version>${dynamo.version}</version>

</dependency>

<dependency>
<groupId>org.dynamoframework</groupId>
<artifactId>dynamo-formfill</artifactId>
<version>${dynamo.version}</version>

</dependency>

<dependency>
<groupId>org.dynamoframework</groupId>
<artifactId>dynamo-functional-domain</artifactId>
<version>${dynamo.version}</version>

</dependency>

<dependency>
<groupId>org.dynamoframework</groupId>
<artifactId>dynamo-export</artifactId>
<version>${dynamo.version}</version>

</dependency>

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>

</dependency>

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-validation</artifactId>

</dependency>

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>

</dependency>

<dependency>
<groupId>org.springdoc</groupId>
<artifactId>springdoc-openapi-starter-webmvc-

ui</artifactId>

<version>2.5.0</version>

</dependency>

<dependency>
<groupId>commons-io</groupId>
<artifactId>commons-io</artifactId>
<version>2.16.1</version>

</dependency>

<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>

</dependency>

<dependency>
<groupId>org.springframework.boot</groupId>

Dynamo: Reference documentation page 58 of 116

<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>com.querydsl</groupId>
<artifactId>querydsl-jpa</artifactId>
<version>5.1.0</version>
<classifier>jakarta</classifier>
</dependency>
<dependency>
<groupId>com.querydsl</groupId>
<artifactId>querydsl-apt</artifactId>
<version>5.1.0</version>
<classifier>jakarta</classifier>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>com.h2database</groupId>
<artifactId>h2</artifactId>
<version>2.2.224</version>
</dependency>
<dependency>
<groupId>org.apache.poi</groupId>
<artifactId>poi</artifactId>
<version>5.2.5</version>
</dependency>
<dependency>
<groupId>org.apache.poi</groupld>
<artifactId>poi-ooxml</artifactId>
<version>5.2.5</version>
</dependency>
<dependency>
<groupId>com.opencsv</groupld>
<artifactId>opencsv</artifactId>
<version>5.9</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.13.0</version>
<configuration>
<source>${java.version}</source>
<target>S${java.version}</target>
<parameters>true</parameters>
<compilerArgs>
<arg>-parameters</arg>

Dynamo: Reference documentation page 59 of 116

</compilerArgs>
</configuration>
</plugin>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<version>3.3.1</version>
<executions>
<execution>
<configuration>
<outputDirectory>target/generated-
sources/annotations</outputDirectory>

<processor>com.querydsl.apt.jpa.JPAAnnotationProcessor</processor
>
</configuration>
</execution>
</executions>
<configuration>

<excludes>
<exclude>
<groupId>org.projectlombok</groupld>
<artifactId>lombok</artifactId>
</exclude>
</excludes>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>3.3.0</version>
</plugin>
</plugins>
</build>
</project>

With this in place, there is only a little bit of set-up needed to be able to use the application.
First of all, include an ApplicationConfig class as follows

package com.opencirclesolutions.myapplication.configuration;

import com.opencirclesolutions.myapplication.domain.MainActivity;
import

Dynamo: Reference documentation page 60 of 116

com.opencirclesolutions.myapplication.domain.QMainActivity;
import
org.dynamoframework.configuration.ApplicationConfigurationSupport
import org.dynamoframework.dao.BaseDao;

import org.dynamoframework.dao.impl.DefaultDaoImpl;

import org.dynamoframework.functional.domain.Country;

import org.dynamoframework.functional.domain.QCountry;
import org.dynamoframework.functional.domain.QRegion;

import org.dynamoframework.functional.domain.Region;

import org.dynamoframework.service.BaseService;

import org.dynamoframework.service.impl.DefaultServiceImpl;
import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

@Configuration
public class ApplicationConfig extends
ApplicationConfigurationSupport

@0verride
protected String[] getBaseNames() {
return new String[] { "classpath:/META-INF/entitymodel",
"classpath:/messages”,
"classpath:/ocscommon”,
"classpath:/ValidationMessages" };

}

// some default DAOs and services for illustration purposes.
Remove at your discretion.
@Bean
public BaseDao<Integer, Region> regionDao() {
return new DefaultDaoImpl<>(QRegion.region, Region.
class);

}

@Bean
public BaseService<Integer, Region> regionService(BaseDao
<Integer, Region> regionDao) {
return new DefaultServiceImpl<>(regionDao, "code");

}

@Bean
public BaseDao<Integer, Country> countryDao() {
return new DefaultDaoImpl<>(QCountry.country, Country
.class, "parent");

}

@Bean
public BaseService<Integer, Country> countryService(BaseDao

Dynamo: Reference documentation page 61 of 116

<Integer, Country> dao) {
return new DefaultServiceImpl<>(dao, "code");

}

Finally, we need a Spring Boot Application class

package com.opencirclesolutions.myapplication;

import
org.dynamoframework.configuration.DynamoConfigurationProperties;
import org.springframework.boot.SpringApplication;

import
org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.boot.autoconfigure.domain.EntityScan;
import
org.springframework.boot.context.properties.ConfigurationProperti
es;

import
org.springframework.boot.context.properties.EnableConfigurationPr
operties;

import
org.springframework.boot.context.properties.EnableConfigurationPr
operties;

import org.springframework.context.annotation.ComponentScan;
import

org.springframework.data. jpa.repository.config.EnableJpaAuditing;

@SpringBootApplication

@ComponentScan(basePackages = {"[YOUR PACKAGE GOES HERE]"

, "org.dynamoframework"})
@EntityScan({"org.dynamoframework.functional.domain", "[YOUR
PACKAGE GOES HERE]"})

public class MyApplication {

public static void main(String[] args) {
SpringApplication.run(MyApplication.class, args);
}

Be sure to replace the placeholders above by the directories that contain your entities (for
the @EntityScan)and your services/components (for the @ComponentScan)

The application also needs access to an implementation of the Dynamo interface
UserDetailsService. This service is responsible for checking whether a user is in a certain
role and whether they are allowed to perform certain actions. The implementation of this
service depends on your authentication provider of choice and implementing it is beyond the

Dynamo: Reference documentation page 62 of 116

scope of this documentation. Below you find a dummy implementation that will never reject
a request.

@Service
public class MockUserDetailsService implements UserDetailsService
{
@Override
public boolean isUserInRole(String... roles) {
return true;

}

@Override
public void validateReadAllowed(EntityModel<?> model) {

}

@0verride
public void validateWriteAllowed(EntityModel<?> model) {

}

@Override
public void validateDeleteAllowed(EntityModel<?> model) {

}

9.2. Message bundles

A Dynamo application uses a number of message bundles. These message bundles are
made available to the Spring Framework and you can retrieve a message from them using
the MessageService which is a Spring-managed singleton bean that you can inject into your
services. Note that many standard components already have a reference to this
MessageService.

The message bundle that is most important for updating the application is the message
bundle located at src/main/resources/entitymodel properties. \¥hile the application will
function without this message bundle, it is very useful for specifying e.g., localizations of
enumeration values or for overriding entity model defaults defined in the annotations.

The MessageService provides a number of methods for retrieving messages. Some of
these are used internally by the framework and should not normally be used directly. The
following methods are intended for developers:

- getMessage(String key, Locale locale) retrieves a message based on its key,
using the specified locale. If no message is found, then a warning message will be
returned.

- getMessage(String key, Locale locale, Object.. args) retrieves a message

Dynamo: Reference documentation page 63 of 116

based on its key, using the specified locale, and using the specified parameters. If the
message contains placeholders ({0}, {1}, {2, etc)) these will be replaced by the provided
parameters.

If a message with a certain key cannot be found, then a default warning message will be
returned. If you do not want this behaviour, you can use the getMessageNoDefault()
version of the method instead. This version returns null when a message cannot be found.

As a Dynamo application is a Spring Boot application, you can add or modify any properties
by changing the application.properties (or application.yml) file which should be located in the
src/main/resources directory of the Ul subproject. The properties specific to Dynamo will be
covered in the section Configuration.

0.3. Authentication and authorization

Dynamo does not have any functionality for directly dealing with authentication. It is
recommended to use Spring Security for securing your application.

The following gives some pointers for setting up Spring Security, using OAuth2 (with the
backend serving as an OAuth resource server)

@EnableWebSecurity
@EnableMethodSecurity
@Configuration

public class MySecurityAdapter {

@Bean
MvcRequestMatcher .Builder mvc(HandlerMappingIntrospector
introspector) {
return new MvcRequestMatcher.Builder(introspector);

}

@Bean
public SecurityFilterChain filterChain(HttpSecurity http,
MvcRequestMatcher .Builder mvc) throws Exception {
return http
.authorizeHttpRequests(
config -> config.requestMatchers(mvc
.pattern("/api/dynamo/status"),
mvc.pattern("/v3/api-docs”
)) .permitAll())
.csrf(csrf -> csrf.disable())
.authorizeHttpRequests(auth -> auth
.anyRequest () .authenticated())
.oauth2ResourceServer(config -> config.jwt
(jwtConfigurer -> jwtConfigurer
.jwtAuthenticationConverter (
new RolesClaimConverter (
new

Dynamo: Reference documentation page 64 of 116

JwtGrantedAuthoritiesConverter()

)
))).build();

}

@Bean
GrantedAuthorityDefaults grantedAuthorityDefaults() {
return new GrantedAuthorityDefaults("");

}

- We create a class, and annotate it with the @EnableWebSecurity and
@EnableMethodSecurity annotations in order to enable Spring security.

- We create a MvcRequestMatcher that allows us to define certain patterns that are
excluded form the authentication (e.g., the “status” endpoint).

- We set up HTTP security, permitting access to some URIs based on the request matcher,
and adding JWT-based security for all other endpoints.

- We set up a way of extracting the roles from the JWT token. This part depends a lot on
the OAuth server you are using, so there is no catch-all way to configure this.

- The GrantedAuthorityDefaults is a convenience feature, it removes the ROLE prefix
from all role names.

9.4. Front-end set-up

When you start a new front-end project that uses the Dynamo framework in its front-end,
there are several approaches you can take. The easiest approach is to use the blueprint
project found at https://github.com/opencirclesolutions/dynamo-blueprint

This project contains the skeleton for an Angular application that uses the Dynamo
framework. It comes with:
- A package,json containing the required dependencies/libraries

+ The sources generated by the OpenAPI code generator (more on this below) based on
the endpoints offered by the back-end. These are included in the dynamo/model
directory

- The generic components that make up the Dynamo framework. These are located in the
src/app/shared directory

- A basic skeleton for the application (app.module.ts with all the required dependencies)

The fastest way to get started is to fork this project, then replace all occurrences of "dynamo-
blueprint” by your desired project name.

With this in place, you should be able to run the ng serve command to start a minimal
application. This application has all the infrastructure in place but does not do any
authentication or authorization.

In order to add custom logic to this application, you can run the following command to create

Dynamo: Reference documentation page 65 of 116

https://github.com/opencirclesolutions/dynamo-blueprint

a component:

Nng generate component <name>

Inside this component, you can use the dynamo components like <app-generic-search-
layout>.

In order to be able to actually use the component, don't forget to add a route to it in the app-
routing.module.ts, as shown below.

{

path: ',

title: 'Organizations’,

component: OrganizationSearchComponent
i

9.5. Adding Dynamo to an existing front-end project

If you already have an existing front-end project you can also copy the Dynamo sources
directly to your project.

To do so, make sure that your project uses the following dependencies

"dependencies”: {
"@angular/animations"”: "716.1.2",
"@angular/common": "*16.1.2",
"@angular/compiler”: "716.1.2",
"@angular/core": "*6.1.2",
"@angular/forms": "*16.1.2",
"@angular/platform-browser": "*16.1.2",
"@angular/platform-browser-dynamic": "*16.1.2",
"@angular/router”: "*16.1.2",
"@ngx-translate/core”: "715.0.0",
"@ngx-translate/http-loader": "A7.0.0",
"angular-oauth2-oidc": "*15.0.1",
"bootstrap": "A5.2.3",
"date-fns": "*3.3.1",
"ngx-extended-pdf-viewer": "#19.7.1",
"primeicons”: "*6.0.1",
"primeng”: "716.0.2",
"quill": "*2.0.1",
"rxjs": "A7.8.1",
"tslib": "72.3.0",
"zone.js": "*0.13.1"

i

"devDependencies": {

Dynamo: Reference documentation page 66 of 116

"@angular-devkit/build-angular”: "*16.1.1",
"@angular/cli": "~16.2.0",
"@angular/compiler-cli": "716.1.2",
"@types/jasmine": "~5.1.0",
"jasmine-core": "~4.6.0",

"karma": "~6.4.0",
"karma-chrome-launcher": "~3.2.0",
"karma-coverage": "~2.2.0",
"karma-jasmine": "~5.1.0",
"karma-jasmine-html-reporter": "~2.1.0",
"typescript": "~5.1.3"

and that Bootstrap and ngx-translate are set up properly.

With that in place, you can copy the contents of the dynamo-angular/shared folder to the
/src/app/shared folder in your application.

Instead of downloading directly form the Dynamo sources, the artifact
@ org.dynamoframework:dynamo-angular:4.0.0-RC2:shared can also
w be downloaded. This artifact contains the shared sources. Note the
classified shared.

You will also need the code used to communicate with the back-end. You can make this
available to the front-end by copying the contents of the dynamo-angular/dynamo/model to
the dynamo/model directory in your front-end application. You can also run the Open API
tools generator as described below.

- Instead of downloading directly form the Dynamo sources, the artifact
O org.dynamoframework:dynamo-angular:4.0.0-RC2:model can also
d be downloaded. This artifact contains the model. Note the classified model.

Finally, the messages used for the internationalization of the Dynamo components have to be
added to the application message bundles. These messages are included under the
dynamo-angular/ii8n/ directory. Currently, English and Dutch are supported. These message
need to be added to the message bundle files, typically under /src/assets/i18n

Instead of downloading directly form the Dynamo sources, the artifact
(r) org.dynamoframework :dynamo-angular:4.0.0-RC2:118n can also be
w downloaded. This artifact contains the internationalization messages. Note
the classified 118n.

Finally, in case you are using the PDF viewer component and this produces errors, you might
need to add the following to your angular.json file:

"assets": |
"src/favicon.ico",
"src/assets",

Dynamo: Reference documentation page 67 of 116

{
llglobll: ll**/*ll'
"input": "node_modules/ngx-extended-pdf-viewer/assets/",
"output": "/assets"

}

9.6. Code generation

9.6.1. Using npx

Out of the box, the code in the blueprint project contains model objects and service for
communicating with the standard Dynamo REST endpoints.

However, if your application contains any custom endpoints that you always want to access
from the Ul in a convenient way, you can use the Open Api code generator to generate the
plumbing code for you.

To do so, first start the back-end application, then open a web browser and navigate to
http://localhost:8080/v3/api-docs.yaml. This will download the yaml file.

Use curl to download this file

Q

- curl -0 http://localhost:8080/v3/api-docs.yaml

After this, run the following command:

npx @openapitools/openapi-generator-cli generate -i api-docs.yaml
-g typescript-angular -o ./dynamo/model/ --additional
-properties=enumPropertyNaming=original, ngVersion=16

This will generate the front-end source code in the specified directory (in this case
/dynamo/model). It will now be ready for usage by the framework.

The code for any additional custom endpoints will be added to the /dynamo/model folder,
along with the code for the generic Dynamo endpoints (running this command will overwrite
any of the existing code).

9.6.2. Using Apache Maven

It is also possible to generate the front-end code using Apache Maven. This requires the api-
docs,json file. This file can be obtained similarly to api-docs.yaml file: start the back-end
application, then open a web browser and navigate to http:.//localhost:8080/v3/api-docs.
After this, save the file to api-docs.json.

(f) ‘ Use curl to download this file

Dynamo: Reference documentation page 68 of 116

http://localhost:8080/v3/api-docs.yaml
https://curl.se
http://localhost:8080/v3/api-docs
https://curl.se

curl -0 http://localhost:8080/v3/api-docs.yaml

To generate the front-end code, the openapi-generator-maven-plugin is used. The plugin
needs to be configured as shown below:

<plugin>
<groupId>org.openapitools</groupId>
<artifactId>openapi-generator-maven-plugin</artifactId>
<version>7.8.0</version> <!-- or use a newer version -->
<executions>
<execution>
<goals>
<goal>generate</goal>
</goals>
<phase>generate-resources</phase>
<configuration>
<inputSpec>
S{project.build.directory}/openapi.json</inputSpec>
<generatorName>typescript-angular</generatorName>
<output>src/main/${front-end.name}/dynamo/model</output>
<configOptions>
<ngVersion>16.1.2</ngVersion>
<disallowAdditionalPropertiesIfNotPresent>
false</disallowAdditionalPropertiesIfNotPresent>
<enumPropertyNaming>original</enumPropertyNaming>
</configOptions>
</configuration>
</execution>
</executions>
</plugin>

It is also possible to completely integrate the generation of the front-end code in the build
process. A possible way to this is by using the springdoc-openapi-maven-plugin. Refer to the
readme of this plugin for an example.

Dynamo: Reference documentation page 69 of 116

https://github.com/OpenAPITools/openapi-generator/blob/master/modules/openapi-generator-maven-plugin/README.md
https://github.com/springdoc/springdoc-openapi-maven-plugin
https://github.com/springdoc/springdoc-openapi-maven-plugin

10. General front-end services

10.1. Localization

To use localization, you can use the (standard) functionality provided by the
translateService.

Message bundles (named <locale>json, e.g., nljson, enjson) can be placed in the assets/i18n
directory.

The messages take the form key : value:

"server_unavailable": "De server is momenteel niet beschikbaar"
In the HTML components, messages can be referenced as follows:

{{ 'server_unavailable' | translate }}

In the Typescript files, you can inject a translateService instance, then use that to retrieve
values from the message bundle:

this.translate.instant('maximum_value', {
maxValue: am.maxValue,

)

10.2. Notification messages

In order to display notification messages, you can inject and use the NotificationService
into your component.

You can then use the info (), warn(),and error () methods to display an error message

this.messageService.warn('Selected something:' + obj.firstName)

A Let op X

Selected something:Paul

Figure 4. Example of a notification.

The methods of the NotificationService take a String literal, not a key
o from the message bundle. If you want to display a value from a message

Dynamo: Reference documentation page 70 of 116

bundle, you need to retrieve that using the translateService first.

By default, the message will disappear after a couple of seconds, but you can use the
sticky parameter set to true in order to make the message sticky/persistent.

Dynamo: Reference documentation page 71 of 116

11. General Ul concepts

11.1. Search filters

The Dynamo Framework uses a generic framework for executing search requests to the
back-end.Normally the details of this framework are hidden from the developer, but in some
cases, eg., when defining field filters, it can be useful to know how the filter mechanism
works in detail. The rest of this section will cover how to set up the various supported filters.

11.1.1. EqualsFilter

export function createEqualsFilter(attributeName: string, value:
any) {
let filter: EqualsFilterModel = {
match: 'EQUALS',
name: attributeName,
value: value
I
return filter;

}

The EqualsFilter is a filter on a single attribute value. This can be used for a wide range of
data types: strings, boolean, integers (when searching for an exact match), enumeration
values, etc.

substrings, case-sensitivity, etc. The front-end only has to pass along the

E In the case of a String value, the back-end will take care of searching for
value to search for.

11.1.2. NumberRangeFilter

export function createNumberRangeFilter(attributeName: string,
from: any, to: any) {
let filter: NumberRangeFilterModel = {
match: 'NUMBER_RANGE',
name: attributeName,
from: from,
to: to
i
return filter;

}

The NumberRangeFilter can be used to filter on a numeric range. It can be used for both
integral and decimal values. The filter contains a from value (lower bound, including) and a
to value (upper bound, inclusive). At least one of these must be filled.

Dynamo: Reference documentation page 72 of 116

11.1.3. DateRangefFilter

export function createDateRangeFilter(attributeName: string,

from: any, to: any) {
let dateStrFrom: any
let dateStrTo: any =

= dateToString(from)
dateToString(to)

let filter: DateRangeFilterModel = {
match: 'DATE_RANGE',
name: attributeName,
from: dateStrFrom,
to: dateStrTo
%
return filter;

}

The DateRangeFilter can be used to filter on a range of dates (without time stamps). The
filter contains a from value (lower bound, including) and a to value (upper bound, inclusive).
At least one of these values must be filled.

The actual values that are sent to the back-end in case of filtering on a Date
are always string representations in ISO 8601 format (i.e., yyyy-MM-dd). Be
e careful when converting from Javascript Dates (which always contain a time
stamp) to I1ISO 8601 string, it is very common to end up with a date that is
one day too early.

11.1.4. InstantRangeFilter/LocalDateTimeRangeFilter

export function createTimestampFilter(attributeName: string,
from: Date, to: Date, instant: boolean) {

let dateStrFrom = dateToTimestamp(from, instant);
let dateStrTo = dateToTimestamp(to, instant);

if (instant) {
let filter: InstantRangeFilterModel = {
match: 'INSTANT_RANGE',
name: attributeName,
from: dateStrFrom,
to: dateStrTo
i
return filter;
} else {
let filter: LocalDateTimeRangeFilterModel = {
match: 'LOCAL_DATE_TIME_RANGE',
name: attributeName,
from: dateStrFrom,

Dynamo: Reference documentation page 73 of 116

https://en.wikipedia.org/wiki/ISO_8601

to: dateStrTo
i
return filter;
}
}

These filters can be used to specify filtering on a range of instants or LocalDateTime values.
The filter contains a from value (lower bound, including) and a to value (upper bound,
inclusive). At least one of these must be filled.

11.1.5. NumberlnFilter

export function createNumberInFilter(attributeName: string, ids:
any[]) {
let filter: NumberInFilterModel = {
match: 'NUMBER_IN',
name: attributeName,
values: ids
IE
return filter;

}

The NumberInFilter can be used to filter on one or more entities based on their IDs. This

filter takes a values parameter which must be an array containing the IDs of the entities to
filter on.

This is used by the framework for filtering using components that allow the user to select
multiple entities, i.e., the lookup field and the multi select field.

11.1.6. TimeRangeFilter

export function createTimeRangeFilter(
attributeName: string,
from: any,
to: any

) : TimeRangeFilterModel {
let dateStrFrom: any = stringToTime(from);
let dateStrTo: any = stringToTime(to);

let filter: TimeRangeFilterModel = {
match: 'TIME_RANGE',
name: attributeName,
from: dateStrFrom,
to: dateStrTo
%

return filter;

Dynamo: Reference documentation page 74 of 116

The TimeRangeFilter can be used to filter on a range of time stamps (e.g. "14:57" to “16:44")
The filter contains a from value (lower bound, including) and a to value (upper bound,
inclusive). At least one of these must be filled.

11.1.7. ElementCollectionFilter

export function createElementCollectionFilter (
am: AttributeModelResponse,
vals: any|[]
): ElementCollectionFilterModel {
vals = vals.map((val) => {
if (
am.elementCollectionType ===
AttributeModelResponse.ElementCollectionTypeEnum.INTEGRAL
) A

return parselInt(val);
}

return val;

1)

let filter: ElementCollectionFilterModel = {
match: 'ELEMENT_COLLECTION',
name: am.name,
values: vals,

Hi

return filter;

The ElementCollectionFilter is used to filter on the element on an element collection.
The filter contains a values array which can contain either a list of integer or a list of strings.
An entity will match the filter if the element collection contains at least one of the requested
values.

11.1.8. OrFilter

return [createOrFilter([
createEqualsFilter('reservationCategory', 'ACADEMY'),
createEqualsFilter('reservationCategory', 'GOLF_COURT'),
createEqualsFilter('reservationCategory', 'GYM'),
createEqualsFilter('reservationCategory', 'SPA')

DI,

The OrFilter can be used to chain together a number of other filters using the logical OR
operator:

Dynamo: Reference documentation page 75 of 116

11.1.9. NotFilter

return [createNotFilter(createEqualsFilter('reservationCategory'
, 'RESERVED_EXTRA'));

The NotFilter can be used to create a filter that negates the filter encloses in it.

11.1.10. NullFilter

return createNullFilter('parent');

The NullFilter can be used to create a filter that checks if the value is NULL.

11.2. Updates

Some extra explanation is in order with regard to how the Dynamo framework deals with
updates of existing entities. All updates of existing entities are performed by doing a PUT call
to /api/dynamo/crud/{entityName}/entityId.

The Dynamo Framework does not currently support partial updates using
the PATCH operation. In principle, this means that with every update the
entire entity, including any nested entities, are updated.

However, the framework makes sure that any attributes that are not visible
in the form, or that are visible in the form but cannot be edited because they
are read-only, are not updated. This happens fully on the back-end and is
not something that the front-end developers have to take into account.

11.3. Editing complex attributes

With regard to editing complex attributes inside an edit form, Dynamo offers several options.
This section will go over these options.

First of all, there are basically three types of complex attributes:

+ Many-to-one (or possible one-to-one although this is rare) relations from the entity being
edited to another entity. In this case the user can select one option from a list of available
options. The most common way to edit such a relationship is by means of a combo box
(dropdown), but Dynamo also offers the option to use an auto-complete field or a lookup

field.

In case of a combo box, the framework will by default show all available options (up
to a maximum of 200), and will perform a GET call without any filters in order to
retrieve the available options.

When you define a field filter, the application will instead perform a call to the search
endpoint, using a filter on the displayProperty attribute in combination with the
field filters.

Dynamo: Reference documentation page 76 of 116

In case of an auto-complete field, the framework will not initially perform a request to
retrieve the available options. Instead, a request is fired when the user starts typing in
the component. In this case, a call to the Search endpoint will be performed, using a
single filter on the displayProperty attribute.

In case of a lookup field, the framework will not initially perform a request to retrieve
the available options. Instead, the user can use a button to bring up a popup dialog
containing a search form. This allows the user to carry out a complex search query.
The search form is constructed using the entity model for the entity you are searching
for. By default, this is the standard entity model for that entity, but you can use the
lookupEntityReference setting on the attribute model to specify a different entity
model and the lookupQueryType to specify the query type to use.

- Many-to-many relationships between two entities. In this case, the user can select one or
more options from a list of available options. The most common way to edit such a
relationship is by means of a multi-select field, but Dynamo also offers the option to use
an lookup field.

For a multi-select field, the framework will by default show all available options (up to
a maximum of 200), and will perform a GET call without any filters in order to retrieve
the available options. For this to work, the 1istAllowed setting on the entity much
be enabled

When you define a field filter, the application will instead perform a call to the search
endpoint, using a filter on the displayProperty attribute in combination with the
field filters.

When using a lookup field, the framework will not initially perform a request to
retrieve the available options. Instead, the user can use a button to bring up a popup
dialog containing a search form. This allows the user to carry out a complex search
query. The search form is constructed using the entity model for the entity you are
searching for. By default, this is the general entity model for that entity, but you can
use the lookupEntityReference setting on the attribute model to specify a
different entity model and the 1ookupQueryType to specify the query type.

+ A one-to-many relationship, for which the details cannot exist without the parent entity,
e.g. an order with multiple order lines. In this case, the framework will render a table
inside the form that can be used to modify the related entities while editing the parent
entity. For this to work (properly), it is generally advisable to include the relationship in the
(detail) @FetchJoins of the entity. The entity model that is used to render the table is in
this case a nested entity model that is part of the main entity model.

Dynamo: Reference documentation page 77 of 116

Translations

Description * Budget Founded
ff
fx
XXX

- |

fdf

gopoooa

fdf

Figure 5. Screen to manage translations.

11.4. Hidden fields

In rare cases, it can occur that your application contains an edit form for creating/updating
entities that depends on an external value that is dependent on the context. eg., you are
creating a new person that is a member of an organization, but this organization is not
present as a field in the input form, however it is passed to the edit form based on a previous
action. In this case, you can use a hidden field to pass a value into an edit form. The hidden
field is not present/visible in the form, but its value is passed along to the backend
regardless.

In order to include a hidden field in a form, use an ng-template tag and add the
dHiddenField directive to it. Then provide the field name and value. In case this is an entity,
it is sufficient to only include the primary key (entityId in the example below).

<app-generic-split-layout
entityName="PersonalRelation"
[openInViewMode]="true"
[defaultFilters]="getDefaultFilters()"
(afterEntityCreated)="afterEntityCreated(Sevent)"

<ng-template
dHiddenField
attributename="memberFrom"
[value]="entityId"
></ng-template>

Dynamo: Reference documentation page 78 of 116

11.5. View objects

In general, Dynamo is not particularly concerned with whether the objects you are displaying
in the Ul are actual entities backed by a database table - any class that extends the
AbstractEntity class (and is hence identified by a unique ID) can be used with the entity
model framework). This makes it relatively easy to use View Objects in the Ul In the case of a
view object you are creating an object that is solely used to transfer data to the Ul where it
will be used for display purposes. This technique can be used to combine data from eg.,
multiple sources

In order to use a view object, take the following steps:

- Create a class that will serve as the View Object, and have it extend the
AbstractEntity class. Using the @Model annotation, disable any update/create
functionality for this entity by setting the createAllowed, updateAllowed and
deleteAllowed settings to false.

- Create a service that extends BaseSearchService.” This is a subclass of the general
BaseService that only supports methods for searching (not for updating and deleting).

- Implement this service, and inside the implementation provide the implementations for
the relevant search methods. A useful technique here is to delegate (most) calls to an
existing service that actually communicates with the database, then transform the results
you retrieve from that service to the view object format.

- In case you are performing a translation like this, make sure to copy the individual field
values into the view object, rather than wrapping entire existing objects. This allows you
to much more easily modify the entity model attributes and prevent issues with data
loading.

-+ With this in place, you will be able to use (relevant) entity and attribute model settings on
the view object.

- In the front-end, you can simply create a layout component as you would normally, and
instead use the name of the view object as the entityName.

11.6. Entity model actions

It is also possible to define actions on the entity model that will directly be translated to input
dialogs in the Ul. This can be used when you have an action that operates on part of an entity,
e.g. you want a dialog that can be used to change only an organization's name.

In order to use this functionality, you must perform a number of steps:

- First, define a method on the service that is responsible for the entity model (e.g., for the
Organization service use the OrganizationService(Impl). This method must have a
single parameter (which represents the DTO that holds the data that is being edited) and
must return an instance of the entity that is managed by the service.

- The DTO class (in the example below MinimalOrganizationDTO0) must, like “real”
entities, implement the AbstractEntity interface.

- The implementation of the method must be annotated with the @ModelAction
annotation. This annotation accepts the following settings:

Dynamo: Reference documentation page 79 of 116

ID - the unique ID of the action.

DisplayName - This is the caption of the button that will be used to carry out the
action

Icon - the name of the icon that will be used on the button

Type - the type of the action. Can be either CREATE or UPDATE. CREATE means that
the action can be used to create a new entity. These actions will appear on the button
bar below the results table in a search layout or a split layout. UPDATE means that the
actions will appear in each row in the results table.

Roles - an array of the roles that the user must have in order to be able to execute
the action. Actions for which the user is not in the appropriate role will be greyed out
in the UI.

As an example, consider the following;:

@0verride
@ModelAction(id = "AddMinimalOrganization", displayName = "Quick
Add organization",
icon = "pi-building")
@Transactional
public Organization addMinimalOrganization(MinimalOrganizationDTO

dto) {

Organization org = new Organization();

org.
org.
org.
org.
org.
org.
org.

setName(dto.getName());
setAddress(dto.getAddress());
setHeadQuarters(dto.getHeadQuarters());
setFounded(LocalDate.now());
setCountryOfOrigin(dto.getCountry0fOrigin());
setReputation(Reputation.FEARSOME) ;
setMemberCount(dto.getMemberCount());

return save(org);

Under the covers, the application will create an entity model based on the DTO that is passed
to the annotated method. This entity model comes with all the functionality of a regular entity
model - this means that you can annotate the DTO properties with the @Attribute
annotation (and the other entity-model related annotation), and these settings will influence
how the dialog that is used to carry out the action will behave.

In the Ul, the framework will automatically generate buttons that bring up a modal dialog that
can be used to carry out the action. This modal dialog will contain input components based
on the entity model. e.g., for the action defined above, it will look as follows:

Dynamo: Reference documentation page 80 of 116

Maak een nieuw(e) Organization aan

Name
Name

Address
Address

Headquarters
Headquarters
Country Of Origin
Country Of Origin v
Member Count
lembe

Figure 6. Screen with buttons for modal dialogs.

Actions of type CREATE will appear in the button bar below the results table in a search
layout, split layout, or editable table layout.

Actions of type UPDATE will appear in each row in the results table, behind the regular
popup button.

for an UPDATE action, if your DTO class has properties with the same name
o as those of the main entity, the corresponding fields will automatically be
set to the values from the main entity.

The action is also linked to the entity by means of the ID field - the ID of the entity will be
passed along to the call to the back-end and should bind to the ID field in the DTO. In your
service you can then use this ID in order to retrieve the entity.

11.7. Authorization

It is possible to configure role-based authorization to limit which users are allowed to perform
which actions on certain entities. This is done by means of placing the @Roles annotation on
an entity class.

@Roles(readRoles = {}, writeRoles = {"hidden"}, deleteRoles =
{"hidden"})

The @Roles annotation has three properties:

- readRoles defines the list of roles that a user can have in order to perform read
operations. This includes getting the details of a single entity, performing a search
operation, or getting a list of entities.

- writeRoles defines the list of roles that a user can have in order to perform write
operations. This includes performing updates (PUT) and creating new entities (POST).

- deleteRoles defines the list of roles that a user can have in order to perform delete

Dynamo: Reference documentation page 81 of 116

operations.

In all cases it is true that if no value, or an empty list, is provided, no specific roles are
required and any user may perform the action. In case multiple values are provided, a user
can perform the action as long as they have any of the provided roles.

It is possible to use the message bundle to override the required roles, by using the
readRoles, writeRoles and deleteRoles keys. Each value takes a comma-separated list
of the role names.

Entity6.readRoles=role4, role5
Entity6.writeRoles=role6
Entity6.deleteRoles=role?7

The Dynamo back-end will check the roles against the user's Spring Security roles. It is left to
the developer to ensure that the proper roles are added to the user principal (we
recommend using OAuth).

In the backend, you can inject an instance of the UserDetailsService in order to be able
to perform role checks. You can then use the validateXXX() methods which will throw an
0CSSecurityException when the wuser does not have the proper roles to
read/write/delete the entity managed by the entity model.

void validateReadAllowed(EntityModel<?> model);
void validateWriteAllowed(EntityModel<?> model);
void validateDeleteAllowed(EntityModel<?> model);

In the front-end, the Ul components offered by the Dynamo framework will be automatically
adapted based on the provided roles. This means that:

- The component will be hidden when the user does not have read rights.

+ The component will be rendered in read-only modus (and no “add" of “edit" buttons will
be present) when the user does not have write rights.

+ The Delete button will only be rendered when the user has “delete” rights.

Currently, the Dynamo framework does not provide functionality for automatically building a
menu or defining navigation rules based on the entity model roles. However, it does offer
some functionality to ensure that only authorized users get to see certain screens

First of all, you can add a RoleGuard to any route that should only be accessible to certain
users:

{
path: 'organizations',
title: 'Organizations’,
canActivate: [RoleGuard, BackendAvailableGuard],

Dynamo: Reference documentation page 82 of 116

component: OrganizationSearchComponent,
data: {roles : ['view_organization']}

}

The data takes an array of roles that are allowed to access the specified route. The
RoleGuard will block access to a route if the user does not have at least one of the provided
routes, and navigate to the 1login route instead.

Secondly, you can use the AuthenticationService to check whether a user is in a certain
role. You can e.g.,, use this when building a menu, to enable/disable certain routes.

Dynamo: Reference documentation page 83 of 116

12. Composite Ul components

12.1. GenericSearchlLayout

One of the most commonly used components will be the “Generic Search Layout" which
offers a search form combined with a results table. To use a GenericSearchLayout, define
your own component, then in the HTML for that component, include something like this

<app-generic-search-layout entityName="Organization”
></app-generic-search-layout>

This is the most basic set-up that will provide you with a search screen for the “Organization”
entity. By default, this will do the following:

- Create a search form that allows the user to search on the attributes that are marked as
searchable=SearchMode.ALWAYS. The attributes are ordered according to the
SearchAttributeOrder defined on the entity

For complex attributes, the SearchSelectMode is used to determine which
component to render.

- Create a results table that contains all the attributes that are marked as
visibleInGrid=true. The attributes are ordered according to the
GridAttributeOrder defined on the entity.

By default, sorting is enabled for all columns. You can disable this for certain
attributes by setting the sortable setting on the @Attribute to false.

For dates and times, the displayFormat will be used to render the values inside the
table.

For Boolean fields, the trueRepresentation and falseRepresentation will be
used to render the values inside the table.

For complex attributes, the displayProperty of the related entity will be used to
display the values inside the table.

+ Each row in the table will contain a Delete button that allows the user to delete an entity.
This button will only show up if deleteEnabled is set to true for the entity (and if the
user has the correct rights)

By default, nothing will happen when you click on a row in the table, or

e when you click the Add button. The functionality for navigating to a detail
screen must be explicitly enabled. The easiest way to do this is by defining
the detailNavigationPath (see below).

12.1.1. DetailNavigationPath

<app-generic-search-layout entityName="Organization"
detailNavigationPath="organization"

Dynamo: Reference documentation page 84 of 116

The detailNavigationPath setting can be used to set the path that is used to navigate to
a details page for editing an entity that is selected in the result table. Note that you must
actually create a separate component (and include a route to it) for this detail page.

If this value is set, no extra actions are needed to navigate to a detail screen for editing or
creating an entity. If this value is not set (e.g., in case you want some custom behaviour when
clicking on either a row in the table or the Add button, use the onAddButtonClick or
onRowSelect event handlers instead.

12.1.2. SearchFormMode

<app-generic-search-layout entityName="Organization"
[searchFormMode]="searchMode"
>

By using the searchFormMode it becomes possible to switch between the default search
form (as described above) a more dynamic search form. By default, the searchFormMode is
set to STANDARD but if you change it to DYNAMIC the framework will render an (initially)
empty search form to which the user can any number of search filters:

- Clicking on the “Add Filter" button will add a new row in the search form.

- Each row starts with a dropdown component that contains the names of the fields to filter
on.

- Selecting a value from the dropdown will bring up one or two search fields. (depending
on the type of the attribute) that allows the user to specify search values or upper/lower
bounds.

+ The button at the front of the row can be used to remove a search filter.
As an example, consider the following;:

Zoeken

Adres X v Adres

[o]
A

Adres

Figure 7. A search screen.

With regard to fields that are requiredForSearching, when using the dynamic search
form, the application will render a row for every attribute that is required. These rows can't be
removed and the selected attribute cannot be modified.

Dynamo: Reference documentation page 85 of 116

Also, if default search values are defined for any attributes, then for each of these attributes,
a row will be rendered as well. However, these rows can be removed freely and the search
terms can be modified as well.

12.1.3. QueryType

You can use the queryType attribute on the layout to determine the query type to use. The
supported values are PAGING and ID_BASED, with PAGING being the default.

<app-generic-search-layout entityName="Organization"
queryType]="queryType"

></app-generic-search-layout>

Changing this setting will determine how the query will be carried out in the back-end. In
many cases this will probably not be relevant, but there might be situations in which you will
need to switch to ID_BASED, e.g., when you want to display values from a one-to-many
relation inside the table.

12.1.4. PreserveSearchTerms

The preserveSearchTerms setting can be used to store the search terms entered by the
user between visits to the page. By default, this functionality is enabled. With this
functionality enabled, when a user enters one or more search terms and then presses the
Search button, the search terms that the user entered will be saved, and restores once the
user navigates back to the screen.

12.1.5. ShowDetailButton

By default, the user is able to navigate to a detail page by clicking on a row in the table. If you
don't want this behaviour, you can set the showDetailButton setting to true. If this is the
case, the framework will render a button inside each row in the table. Instead of clicking
anywhere in a row in the table, the user can now use this button in order to navigate to a
detail screen.

Reminder: remember that the detailNavigationPath must be set if you want any actual
navigation to occur.

12.1.6. DetailsModeEnabled

By default, the user is able to navigate to a detail page by clicking on a row in the table (or
alternatively by clicking the details button, see above). If you want to disable this behaviour,
you can set the detailsModeEnabled property to false. When this is done, no detail
button will show up, and clicking on a row in the table will do nothing.

12.1.7. ConfirmClear

The confirmClear property can be used to specify whether to ask for confirmation before
clearing the search form. The default value is false.

Dynamo: Reference documentation page 86 of 116

12.1.8. SearchlImmediately

By default, the application will carry out a search request immediately when the screen is first
loaded, resulting in a results table that will be immediately filled. When this is not the
desirable behaviour, you can set the searchImmediately property to false When this is
done, no search request will be carried out after the screen has loaded.

12.1.9. AdvancedModeEnabled

The advancedModeEnabled attribute can be used to specify whether the advanced search
mode is enabled. By default, this is not the case, and the search form will only contain the
attributes for which searchable has been set to ALWAYS. \When advancedModeEnabled is
set to true the search form will also include the attributes for which searchable has been set
to ADVANCED, and the form will include a button to switch between simple and advanced
mode.

12.1.10. DefaultFilters

The defaultFilters property can be used to specify the default filters to use when
carrying out a search request. These default filters are always added to any search request,
even when the search request is empty.

The defaultFilters property takes an array of FilterModel objects that specify which
filters to use.

getDefaultFilters(): FilterModel[] {
let defaultFilters: FilterModel[] = [];
let filter1: EqualsFilterModel = {
match: 'EQUALS',
name: 'reputation’,
value: 'FEARSOME' as any,
IE
defaultFilters.push(filter1);
return defaultFilters;

}

12.1.11. EntityModelReference

The entityModelReference can be used to specify the specific reference of the entity
model to use when constructing the screen.

12.1.12. PopupButtonMode

The popupButtonMode can be used to add a popup button to every row in the
table.Depending on the value of this property, the button can be used to open a popup
dialog for either viewing or editing the selected entity.

-+ By default, this property has the value NONE which means no button will be rendered.

Dynamo: Reference documentation page 87 of 116

+ When the value is changed to READ_ONLY each row in the table will contain a popup
button that will bring up a dialog that can be used to view the details of the selected row.

- When the value is changed to EDIT, each row in the table will contain a popup button
that will bring up a dialog that can be used to edit the selected row.

12.1.13. onAddButtonClick

The onAddButtonClick event handler specifies what happens when the user clicks on the
‘Add" button that is displayed below the table. This button is only displayed when the
createEnabled setting on the entity model is set to true (and when the user has the
appropriate rights)

By default, the application will navigate to the route specified by the
detailNavigationPath and you don't need to set this event handler explicitly.

12.1.14. onRowSelect

The onRowSelect event handler can be used to define the behaviour that should occur
when the user select a row in the table (either by clicking directly on the row, or on the detail
button). The row parameter represents the entire row that was selected.

As an example, onRowSelect can be used to navigate to a detail screen:

onRowSelect(row: any) {
if (row.id) {
this.router.navigateByUrl('/organization/' + row.id);

}

12.1.15. afterSearchFormBuilt

The afterSearchFormBuilt event handler can be used to post-process the search form
after it has been constructed by the framework. This can be used as an alternative to setting
the default values via the Entity Model, and can additionally be used to set default values for
complex attributes.

Below is an example of using this functionality for setting the default of the “country of origin”
field to "Australia”.

afterSearchFormBuilt(info: FormInfo) {
let model = createBasicSearchModel('name', 'Australia');
this.service!.search('Country', model).subscribe((result) =>

let country = result.results![0] as any;

info.formGroup.get('countryOfOrigin')?.patchValue({
value: country.id!,

Dynamo: Reference documentation page 88 of 116

name: country.name!
})
});

when you are setting the value foramultiselect component, be sure that
the value you are passing an array.

12.1.16. Additional row actions

It is also possible to define additional actions that will be available for every row in the table.
For every action you define, a button will be placed in each row in the table.

In the HTML, you can set a value for the additionalRowActions property:

<app-generic-search-layout entityName="Organization"
[additionalRowActions]="getAdditionalRowActions()"
>

Then, in the Typescript file you can define a list of additional actions:

getAdditionalRowActions(): AdditionalRowAction[] {
let action: AdditionalRowAction = {
action: obj => {
this.messageService.warn('Selected something:' + obj
.name)

H

messageKey: 'action_one',

icon: "pi-times",

buttonClass: "btn btn-primary"
}

let action2: AdditionalRowAction = {

action: obj => {

this.messageService.warn('Selected something:' + obj
.name)

o

messageKey: 'action_two',

icon: "pi-chart-pie",

buttonClass: "btn btn-danger",

enabled: obj => (obj['name'] as string).indexOf('a') >= @
}

return [action, action2];

Dynamo: Reference documentation page 89 of 116

An action consists of:
- The action to carry out. This is a function that takes as its argument the current entity that
is being edited.
- The message key that is used to look up the message to display as the button tooltip.
- An optional icon that is placed on the button.
+ The CSS classes to apply to the button.

- An optional function that is used to determine whether the button must be enabled (if
omitted, the button will always be enabled by default).

12.1.17. Additional global actions

In addition to actions that are available for each row in the table, it is also possible to define
global actions that are not tied to a specific entity. These global actions appear in the button
bar below the results table in search form.

getAdditionalGlobalActions(): AdditionalGlobalAction[] {
let action: AdditionalGlobalAction = {
action: () => {
this.messageService.warn('This is a global action')

)
messageKey: 'action_one',
icon: "pi-times",
buttonClass: "btn btn-primary m-1",
enabled: () => {
return true;

}
}

return [action];

An action consists of;

- The action to carry out. This is a function that takes no arguments

- The message key that is used to look up the message to display as the button tooltip.
- An optional icon that is placed on the button.

+ The CSS classes to apply to the button.

- An optional function that is used to determine whether the button must be enabled (if
omitted, the button will be enabled by defaulb).

12.2. GenericForm

The GenericForm component can be used to edit or display a single entity. In its most basic

Dynamo: Reference documentation page 90 of 116

form it can be used as follows:

<app-generic-form
entityName="0rganization"
[entityId]="entityId"

export class OrganizationFormComponent {
entityId?: number;

constructor(
route: ActivatedRoute,
private messageService: LogMessageService,
private crudController: CrudControllerService

) A
let id = route.snapshot.paramMap.get('id');
if (id) {
this.entityId = parselnt(id);
}
}

This will set up an edit form for managing entities of type Organization. It can be used both
for creating new entities and editing existing entities (based on the value of the entityld).

By default, the form will contain a single column of input components, in the order specified
by the @AttributeOrder defined on the entity. The type of the component that will be
rendered depends on various settings on the attribute model (e.g., selectMode,
textFieldMode).

Only the attributes for which visibleInFormis set to true will be included in the form, and
only if they indeed editable (see the Editable type for more details). If an attribute cannot be
edited, then the attribute's current value will be shown as a label.

12.2.1. EntityName and EntityModel

When creating a GenericForm component, it is possible to either pass along an
entityName or an entityModel.” Using the entityName is the most basic configuration,
but it is also possible to pass along an entity model from another component.

When specifying an entityName, it is also possible to specify an entityModelReference to
further specify the exact version of the entity model to use.

12.2.2. OpeninViewMode

By default, the edit form will be rendered in edit mode after being opened. If you want the
form to open in view mode instead, you can set the openInViewMode property to true If this
is the case, the screen will open in read-only mode, and an “Edit" button will be present to

Dynamo: Reference documentation page 91 of 116

switch to edit mode (provided the user has the proper rights and editing the entity is allowed).

12.2.3. NavigateBackRoute/NavigationAllowed

The navigateBackRoute property can be used to specify the navigation route to follow
when navigating back from the screen to another “parent” screen (normally a generic-search-
layout). The navigation is possible by clicking on a “Back” button below the edit form.

It is also possible to disable navigation altogether by setting the navigationAllowed
property to false. In this case, no “back” button will be shown.

12.2.4. Attribute grouping

By default, all input components are displayed in a single column below each other.
However, when you specify one or more attribute groups (on the entity), these will be used to
group the entities together using either tabs sheets or panels.

@AttributeGroup(messageKey = "organization.first", attributeNames
= {"id", "name", "address", "headQuarters", "countryOfOrigin"})
@AttributeGroup(messageKey = "organization.second",
attributeNames = {"memberCount", "yearlyMortalityRate",
"mainActivity",

"governmentSponsored”, "budget"})

public class Organization extends AbstractEntity<Integer> {

By default, the attributes will be grouped together using panels. However, you can change
the attributeGroupMode to TAB to change this to the use tab sheets.

12.2.5. Changing column number and width

By default, the edit form will consist of a single column that spans most of the screen. The
width of the edit form is actually governed by the value of the formWidthClass property.
The default value is

col-1g-8 col-md-10 col-sm-12

In addition to changing this setting, you can also change the number of columns that are
used by changed the value of the number0fColumns property.

12.2.6. AttributeVisible

It is possible to define a function that will determine under which conditions an input
component/attribute will be visible. This can be done by implementing a function that takes
as its parameters

- The attribute model of the attribute

- The object/entity being edited

Dynamo: Reference documentation page 92 of 116

- The form group that contains the input components

You can use these parameters to determine whether to show/hide a certain attribute. The
attributeVisible function is called once for each attribute during the process of
rendering an input form.

attributeVisible(am: AttributeModelResponse, editObject: any,
formGroup: FormGroup) {

let typeControl = formGroup.get('assetCategoryType');

if (!typeControl) {

return true;

}

let typeValue = formGroup.get('assetCategoryType')?.value
?.value;

// no type selected
if (!'typeValue) {
return false;

}

let index = golfsetAttributes.indexOf(am.name)
return index >=0 ? typeValue === 'GOLFSET' : true;

12.2.7. Field filters

Any of the components that can be used to select one or more entities (combobox, multi-
select, lookup-field, auto-complete) can be modified so that an additional filter is applied
when retrieving possible values from the back-end.

In HTML, set a value for the fieldFilters property:

<app-generic-form
entityName="0rganization"
[entityId]="entityId"
[fieldFilters]="getFieldFilters()"

In Typescript, define a function that returns a Map that maps from attribute name to an array
of FilterModel objects

getFieldFilters() {
let fieldFilters: Map<string,FilterModel[]> = new Map<string
,FilterModel[]>();

Dynamo: Reference documentation page 93 of 116

let countryFilter = createEqualsFilter('name’', 'au')
fieldFilters.set("countryOfOrigin", [

countryFilter
1)
let hoodFilter = createEqualsFilter('name’', 'a')
fieldFilters.set("neighbourhoods"”, [

hoodFilter

1);

return fieldFilters;

This example sets up two field filters, one for the countryO0fOrigin attribute and one for
the neighbourhoods attribute. Both filters add a filter on the name attribute. This means that
when the user wants to select one or more values using the input components for these
attributes, they will only get to see options for which the name matches the specified filter.

12.2.8. Post-processing the input form

It is possible to modify an input form after it has been created. The main use case for this is
the option to add inter-field dependencies to the input components (e.g., empty a field when
another field has a certain value). You can set this up by setting the postProcessInputForm
option.

<app-generic-form entityName="Person"
[entityId]="entityId
[postProcessInputForm]="postProcessInputForm"
></app-generic-form>

This should correspond to a typescript function that takes a FormGroup as its argument and
returns void.” Within this function, it is possible to retrieve the input components from the
FormGroup and set up (e.g.) value change listeners that modify field values, enabled/disable
fields based on input, etc.

postProcessInputForm(formGroup: FormGroup) {
let lastName = formGroup.get('lastName')!;
let firstName = formGroup.get('firstName')!;

lastName.valueChanges.subscribe(val => {
// do something
13)
}

Dynamo: Reference documentation page 94 of 116

12.2.9. AfterEntityCreated

The afterEntityCreated callback can be used to perform some additional initialization
after the form for creating a new entity has been initialized. This can be used to set default
values for complex attributes .

E.g, suppose we are creating a new Organization and want to set a default value for the
countryO0fOrigin attribute. This can be done as follows:

afterEntityCreated(event: FormInfo) {
let group = event?.formGroup;

let model = createBasicSearchModel('name', 'Australia');
this.crudController! .search('Country', model).subscribe
((result) => {
let country = result.results![@] as any;

group.get('countryOfOrigin')?.patchValue({
value: country.id!,
name: country.name!
1)
1)
}

<app-generic-form
entityName="0Organization"
[entityId]="entityId"
(afterEntityCreated)="afterEntityCreated(Sevent)"

This callback method will be run whenever the form is opened in the “create new entity
mode”", and will result in the country0fOrigin field being filled with "Australia”

- If this approach is too cumbersome for your purposes, consider overriding
O the initialize() method in the back-end instead (see section Entity
v initialization).

12.2.10. Additional validations

The Dynamo framework will automatically set up field validators based on the attribute
model, e.g., to check whether required fields are filled, whether minimum and maximum
lengths are observed, etc. In addition to this, it is also possible to configure additional
validations in the back-end. If this is not sufficient, it is also possible to extends the front-end
validation in two ways: by adding custom validators to specific fields, and by setting up an
additional validator that fires before submitting the form.

On the generic form, you can do this by setting up a customValidatorTemplate;

Dynamo: Reference documentation page 95 of 116

- Point the customValidatorTemplate property of the app-generic-form to an ng-
template nested inside the form

- Inside the form, include an ‘ngTemplate” that includes the dAdditionalValidators
directive, and pass along the field name and form group

- Use the validators property to pass along an array of additional validators (note that

you can pass along the from group in order to set up validations across multiple fields if
desired).

<app-generic-form
entityName="Member"
[entityId]="entityId"
[customValidatorTemplate]="customValidatorTemplate"

<ng-template #customValidatorTemplate let-formGroup>
<ng-template
dAdditionalValidators
attributeName="bagNumber"
[formGroup]="formGroup"

[validators]="[CustomValidators.bagNumberValidator(formGroup)]"
/>

12.2.11. Additional form actions

It is also possible to define additional buttons/actions that will be added to the button bar at
the bottom of the form. This is done in a declarative fashion.

In the HTML code, you can set a value for the additionalFormActions property:

<app-generic-form
entityName="0rganization"
[entityId]="entityId"
[additionalFormActions]="getAdditionalFormActions()"

Then, in the Typescript file, you can define the additional action:

getAdditionalFormActions(): AdditionalFormAction[] {
let action: AdditionalFormAction = {
action: obj => {
this.organizationService.clearAddress(obj.id)
.subscribe(obj => {
this.comp?.bindExistingEntity();

13)

}

Dynamo: Reference documentation page 96 of 116

messageKey: 'action_one',

icon: "pi-times",

mode: AdditionalActionMode.BOTH,
buttonClass: "btn btn-danger",
enabled: obj => {return false;}

}

return [action];

}

An action consists of:
- The action to carry out. This is a function that takes as its argument the current entity that
is being edited.
- The message key that is used to look up the message to display as the button caption
- An optional icon that is placed in front of the caption

- An additional action mode - this can be BOTH (action shows up both in view mode and
edit mode), EDIT (only in edit mode) or VIEW (only in view mode).

+ The CSS classes to apply to the button

- An optional enabled function that determines when the action is enabled.If omitted, the
action is enabled by default.

12.2.12. FormFillEnabled

The formFillEnabled property can be used to enable functionality for automatically
(partially) filling an input form using an Al service (Large Language Model).In order to use this
functionality, you need to set up the appropriate LLM service, which can mostly be done
using application properties.

The following services are supported:

+ OpenAl (ChatGPT)
- Amazon Bedrock
+ Ollama

- Google VertexAl Gemini

OpenAl

The integration with OpenAPlI can be enabled simply by setting the
dynamoframework.openai.enabled application property to true. In addition, values for
the API key, the desired model, and the maximum number of tokens must be provided.

dynamoframework.openai.enabled=true
dynamoframework.openai.api-key=[SECRET]
dynamoframework.openai.model=gpt-4-turbo
dynamoframework.openai.max-tokens=4096

Dynamo: Reference documentation page 97 of 116

To use the service, a (paid) subscription to OpenAl is required; given such a subscription, the
user can generate an APl key (token) that must be set as the value of the
com.openapi.api.key system property.

Ollama

Ollama is an application that can be run locally (or in a private cloud) that makes it possible to
service Al models in a fairly straightforward manner. It is possible to use Ollama both via the
command line and via a REST interface.

Locally installing Ollama is relatively easy, although the directory in which Ollama is installed
(at least on Windows) is slightly unusual, i.e. <user dir>\AppData\Local\Programs\Ollama .
You might need to add this location to your Path system variable.

Afterwards, you can start Ollama by typing ollama run [model name] (e.g, Ollama run
1lama3)

We have tried the models llama3 and mistral which both seem to work fairly well.

Configuring ollama is relatively easy since it is running locally and does not require an
external account. The configuration needs a URL (the default is localhost:11434) and a model
name (llama3 or mistral).

dynamoframework.ollama.enabled=true
dynamoframework.ollama.url=http://localhost:11434
dynamoframework.ollama.model=11ama3

Google VertexAl Gemini (and PALM)

Google VertexAl offers two LLMs that are interesting for us; PALM and Gemini. \We briefly
tested both types of models and they seems to be fairly fast an reliable (and on par with
OpenAl). Note that the Spring Al documentation mentions that PALM is only available in the USA
but this does not appear to be the case anymore.

Using VertexAl in your application is relatively straightforward, but it does require that you set
up a Google Gloud account (https://console.cloud.google.com/) and link this account to a
credit card. You can then create a project and enable the Vertex API for this project.

dynamoframework.vertexai.enabled=true
dynamoframework.vertexai.project-id=[SECRET]
dynamoframework.vertexai.project-region=europe-westT
dynamoframework.vertexai.model=gemini-1.5-flash-preview-0514

With this configuration in place, you need to provide the application with your project ID,
Google Cloud region, and desired VertexAl model.

It also seems perfectly possible to use the Spring Al gemini library in combination with PALM
models (although the Gemini models seem to perform better)

Dynamo: Reference documentation page 98 of 116

https://console.cloud.google.com/

Amazon Bedrock

Amazon Bedrock is a service (offered by AWS) that provides a large number of Al models.
After a bit of experimentation, we have concluded that the Antropic models (“Claude”) seem
to suit our purposes best.

Once this is in place, you can use the AWS IAM (Identity and Access Management) module to
create a user that must be given "Bedrock Full" access rights, and you can then create a
key/secret pair for accessing the service from your application.

Using the Amazon Bedrock services requires an Amazon account which is
connected to a credit card.

Configuration can then be done as follows:

dynamoframework.bedrock.enabled=true
dynamoframework.bedrock.access-key=[ACCESS KEY]
dynamoframework.bedrock.access-secret=[ACCESS SECRET]
dynamoframework.bedrock.model-id=arn:aws:bedrock:eu-central-
1::foundation-model/anthropic.claude-v2
dynamoframework.bedrock.region=eu-central-1

The configuration for Bedrock can unfortunately be a bit messy, since the available models
are region-dependent and also must be explicitly enabled in the AWS console. Furthermore,
the exact ids of the models can be hard to determine. You can use the AWS console, with the
following command

aws bedrock list-foundation-models

The returned ids can be used models.

When you have configured one or more Al models correctly, and set the formFillEnabled
property to true, an "Auto Fill" button will show up in the button bar below the input form.
Clicking this button will bring up a dialog that allows the user to:

- Select one of the configured Al services.

- Enter the text that is to serve as the input for the LLM prompt.

- Provide any additional instructions that are to be applied to the entire request

- Pressing the "OK"-button will send a request to the LLM service, which will try to translate
the user input to valid property values, which will be pre-filled into the form.

Dynamo: Reference documentation page 99 of 116

Auto Fill X

Al Type
[Chot GPT (OpenAl) X v]

Chat GPT (OpenAl)

Google VertexAl

N\

Figure 8. Autofill example.

You can set the default model to use by setting the value of the parameter
dynamoframework.defaults.ai-service This setting accepts the values CHAT_GPT,
VERTEX_AI, OLLAMA, and BEDROCK.

Pressing the "OK"-button will send a request to the LLM service, which will try to translate the
user input to valid property values, which in turn will be pre-filled into the form. This makes
the most sense when creating a new entity, but the functionality is also available when
editing an existing entity.

The LLMs should generally do a reasonable job of interpreting the user input, especially for
basic attributes like strings or numbers. For complex attributes (i.e. lookup lists) the
framework will try to look up the appropriate entity based on its display property.

12.2.13. File upload

The Dynamo framework comes with built-in functionality for dealing with file uploads. This is
based on a scenario in which you want to upload one or more files and store them as binary
data in the database. Note that is not always the ideal way to store data (especially when files
become big), but it is something that is fairly easily to realize, hence we think it is a useful
feature anyway. Just remember to use it with care.

The way file upload works in Dynamo is as follows:

- First, make sure you have a column in the database in which you want to store the binary
data. It is advisable to place this column in a separate table from the rest of the columns,
so that it becomes possible to not load the file by default, but this is not required. For
postgresqgl, the data type of the column must be bytea.

- Map the auxiliary table to an embedded object in Java (the GiftLogo object contains the
field that will hold the binary data)

@Attribute(visibleInForm = VisibilityType.HIDE, visibleInGrid =
VisibilityType.HIDE)

@JoinColumn(name = "logo")

@0neToOne(fetch = FetchType.LAZY, optional = false, cascade =
CascadeType.ALL)

Dynamo: Reference documentation page 100 of 116

@Embedded
private GiftLogo logo = new GiftLogo();

- Map the field that will hold the binary data:

Optionally, provide a fileNameProperty which points to another attribute (of type
String) in which the file name of the uploaded file must be stored

Optionally, set the downloadAllowed setting to indicate whether it is allowed for the
user to download the file from the application.

Optionally, set the image property to indicate whether the file represents an image. If
this is the case, the application will tdisplay a preview of the uploaded file.

Optionally, set the allowedExtensions setting to determine the set of extensions
the file is allowed to have (do not include any periods)

@Basic(fetch = FetchType.LAZY)

@Attribute(fileNameProperty = "logo.fileName", image = true,
allowedExtensions = {"gif","png", "jpg"},
visibleInGrid = VisibilityType.HIDE, downloadAllowed = true,

visibleInForm = VisibilityType.SHOW)
@Column(columnDefinition = "bytea")
private byte[] image;

@Attribute(editable = EditableType.READ_ONLY, visibleInGrid =
VisibilityType.HIDE,
visibleInForm = VisibilityType.SHOW)

With this in place, the application will render an input component for manipulating the
upload, consisting of:

- A preview window

- An upload button that will bring up a file selection dialog

- A “clear” button for clearing the uploaded file

+ A *download" button (if downloadAllowed is setto true)

Dynamo: Reference documentation page 101 of 116

garjpg.jpg
Image2

+ Uploaden

O Wissen & Downloaden

File Name2
download.jpg

Figure 9. Image component.

Under the covers, the framework will combine the regular post or put request with any
requests to upload or remove files; the regular update will be carried out first, followed by
the upload or removal requests. A special controller (FileController) is responsible for
handling the upload or removal requests.

12.2.14. Custom components

It is possible to replace one or more of the default Dynamo components by your own custom
components. This is done by means of using Angular templates.

In order to use this functionality, place an ng-template inside the form and add the
dOverrideField directive to it. Inside the template you can then include the custom
component content. Note that is necessary to include an additional container that binds the
from-group.

<ng-template
dOverrideField
attributeName="name"
let-am
let-mainForm="mainForm"

<ng-container [formGroup]="mainForm">
<label for="name">Aangepaste naam</label>
<textarea
pInputTextarea
id="name"
name="name"
pInputText
[formControlName]="am.name"
></textarea>
</ng-container>

Dynamo: Reference documentation page 102 of 116

</ng-template>

12.2.15. Free-form mode

that this functionality can also be used inside a Split Layout or an Editable
Table Layout.

As an alternative to using the automatic form generation, it is also possible to define your
own form components and let the Dynamo framework take care of the data binding and
communication with the back-end.

To use this functionality, you must do the following:

- Set the freeFormMode to true on the component declaration
- Declare a template inside the form, and link it to the freeFormTemplate property

- This freeform template is passed a reference to the mainForm form group that holds all
the reactive form controls.

entityName="0rganization"
[entityId]="entityId"
navigateBackRoute="organizations"
[freeFormMode]="true"
[freeFormTemplate]="freeFormTemplate"
entityModelReference="0rganizationFreeForm"

<ng-template #freeFormTemplate let-mainForm>
<p>This is a custom page</p>

<form id="edit-form" *ngIf="mainForm" [formGroup]="mainForm">
<!=your custom content goes here
</form>
</ng-template>
</app-generic-form>

Inside the template, you must define a form and link it to the mainForm. Then, inside the
form, you can include your custom components, and use the formControlName to bind
them to the reactive form (the formControlName must match with a name of an attribute
from the entity model)

Inside the free form component, it is possible to use the convenient <app-generic-field>
component as a shorthand for including the component as they would be generated by the
Dynamo framework.

The <app-generic-field> accepts the parameters shown in the table below.

Dynamo: Reference documentation page 103 of 116

Property Name Explanation

am The attribute model to base the field on.

formGroup The form group that the component is part of.

locale The locale to use when rendering the component.

options The SelectOptions to choose from (for select-one and select-many
components).

enumValues The enumeration values to use.

Table 10. Properties for <app-generic-field>.

Example for a text field

<label for="address">Address</label>
<app-generic-field
[formGroup]="mainForm"
[am]="getAttributeModel('address"')"
[locale]="1locale"

>

</app-generic-field>

Example for a multi-select field

<app-generic-field
[formGroup]="mainForm"
[am]="getAttributeModel('neighbourhoods"')"
[locale]="1ocale"
[options]="1lookupEntities('Neighbourhood"')"

>

</app-generic-field>

It is possible to mix-and-match the use of generic fields and your own freely defined
components inside a free-form-template. This allows you a high degree of control over the
layout of a screen, while at the same time profiting from the efficiency of using the standard
components.

You can also define your own components, for example this:

<label for="name">0rganization Name</label>
<input

id="name"

type="text"

pInputText

formControlName="name"

placeholder="Name"

Dynamo: Reference documentation page 104 of 116

/>

In the Typescript definition, you can use @ViewChild to inject a reference to the form
component, and delegate the logic (e.g., for looking up available options) to the child
component.

@ViewChild(GenericFormComponent) comp?: GenericFormComponent;

getEnumValues(attribute: string) {
return this.comp!.getEnumValues(attribute);

}

lookupEntities(attribute: string) {
return this.comp!.lookupEntities(attribute);

}

save() A
this.comp?.save();

}

12.3. GenericSplitLayout

The GenericSplitLayout is a composite layout component that can be used to display a
results table and an edit form next to each other: the table contains a selection of data, and
selecting a row in the table will cause the details of that row to appear in the edit form. In its
most basic form, the generic split layout can be used as follows:

<app-generic-split-layout entityName="Person"
></app-generic-split-layout>

This renders the aforementioned layout. By default, it shows all entities, and when selecting a
row in the table, the edit form will open in editable mode.

12.3.1. QueryType

You can use the queryType attribute on the layout to determine the query type to use. The
supported values are PAGING and ID_BASED, with PAGING being the default.

<app-generic-split-layout entityName="Person"
[queryType]="queryType"
></app-generic-split-layout>

Changing this setting will determine how the query will be carried out in the back-end. In
many cases this will probably not be relevant, but there might be situations in which you will
need to switch to ID_BASED, e.g., when you want to display values from a one-to-many

Dynamo: Reference documentation page 105 of 116

relation inside the table.

12.3.2. DefaultFilters

The defaultFilters property can be used to specify the default filters that are always
applied to the search request that is used to fill the results table.

The defaultFilters property takes an array of FilterModel objects that specify which
filters to use. More about constructing filters can be found in section Search filters.

getDefaultFilters(): FilterModel[] {

let defaultFilters: FilterModel[] = [];

let filter1: EqualsFilterModel = {
match: 'EQUALS',
name: 'reputation’,
value: 'FEARSOME' as any,

i

defaultFilters.push(filter1);

return defaultFilters;

}

12.3.3. OpeninViewMode

By default, the edit form will be rendered in edit mode after being opened. If you'd rather
have form open in view mode instead, you can set the openinViewMode property to true. If
this is the case, the screen will open in read-only mode, and an “Edit" button will be present
to switch to edit mode.

12.3.4. SearchDialogEnabled

The searchDialogEnabled setting can be used to specify whether a search dialog is available
in order to carry out search requests that can be used to limit the results in the results table. If
this property is set to true, the application will render both a “search” and a “clear” button
above the results table. Clicking the search button will bring up a search dialog. When the
user performs a search and then closes the dialog, the results table will only show the
entities that matches the search. Pressing the clear button will clear the search filters.

12.3.5. QuickSearchProperty

The quickSearchProperty setting can be used to configure a search field for quickly carrying
out a search request. When a value is provided for this property, the framework will render a
text field that can be used to enter a search term. Entering a search term of 3 or more
characters will lead to a search request being carried out based on the provided property.

12.3.6. Post-processing the form and input validations

This works in the same way as for the GenericForm

Dynamo: Reference documentation page 106 of 116

12.3.7. Field filters

This works in the same way as for the GenericForm

12.3.8. Additional row actions

This works in the same way as with the Simple Search layout

12.3.9. Additional form actions

This works in the same way as for the GenericForm

12.4. GenericEditTableLayout

The GenericEditTableLayout is a composite layout component that contains a tabular
display of data that allows the user to modify data or add new data.

<app-generic-edit-table-layout
entityName="Delivery"
[queryType]="queryType"
[additionalActions]="getAdditionalActions()"
[additionalDetailActions]="getAdditionalDetailActions()"
[defaultFilters]="defaultFilters"
*ngIlf="personId"

>

</app-generic-edit-table-layout>

The above will result in a table that contains a number of rows (by default, all the rows will be
shown but you can use the defaultFilters property to limit the result set). Each row will
contain a delete button if the entity model allows deletions, and an “eye” button that can be
used to bring up a dialog that allows the user to view and manipulate the details of the
selected entity.

Below the table is an “Add" button that will bring up a dialog that can be used to add a new
entity.

Deliveries
6 kolommen geselecteerd Vv
Id 1= FromPerson T| ToPerson T| Date 1] Gift T] Remarks T|
1 Manuel 'Read the f*cking Manual' Manolo Octavio 'Open Source' Octaviani 01-05-2024 Stick Horse bacffdf & @ X
2 Hector 'The Hacker' Delgado Octavio 'Open Source' Octaviani 01-05-2024 Przewalski's horse o © X
3 Octavio ‘Open Source' Octaviani Octavio 'Open Source' Octaviani 01-05-2024 Stick Horse ® X
4 Octavio 'Open Source’ Octaviani Octavio 'Open Source' Octaviani 01-05-2024 afdfdfdfdf o X

Figure 10. Table with “Add" buttons.

Supported features (see under the other sections for details)

Dynamo: Reference documentation page 107 of 116

- AdditionalActions (will appear as buttons in each table row)

- AdditionalFormActions (will appear in the button bar below the form in the popup dialog)
- AdditionalGlobalActions

- DefaultFilters

- FieldFilters

+ QueryType

+ PostProcesslnputForm

- AdditionalValidation

12.5. PDF viewer

The Dynamo framework provides a convenient component for viewing PDF documents. The
source document can be provided as either an external URL, an internal URL, or a reference
to the entity model.

In order to view a PDF file that is stored in a field on an entity, use the following set-up

<app-pdf-viewer
[mode]="mode"
[entityId]="2"
entityName="Gift"
attributeName="1logo.image"
></app-pdf-viewer>

With the mode pointing to PdfViewerMode.MODEL. This will render a PDF file stored in the
logo.image field of the Gift entity with primary key 2.

To refer to an internal URL, use the following:

<app-pdf-viewer
[mode]="mode"
fileName="report.pdf"

></app-pdf-viewer>

With the "'mode" pointing to PdfViewerMode.INTERNAL_URL. This will render a PDF file
named "report.pdf” that is retrieved from the back-end.

For this to work, the back-end should provide a REST endpoint mapped to /pdf that returns
a response entity containing the byte representation of the file

@RestController
@RequestMapping(value = "/pdf")
@S1f4j

@RequiredArgsConstructor

Dynamo: Reference documentation page 108 of 116

@CrossOrigin
public class PdfController {

@GetMapping(value = "/{fileName}", produces = MediaType
.APPLICATION_PDF_VALUE)

public ResponseEntity<Resource> getRaw(@PathVariable
("fileName") String fileName) throws IOException {

ClassPathResource cp = new ClassPathResource(fileName);
byte[] bytes = cp.getContentAsByteArray();

InputStreamResource resource = new InputStreamResource
(new ByteArrayInputStream(bytes));
return ResponseEntity.ok()
.header (HttpHeaders.CONTENT_DISPOSITION,
"inline;filename=%s".formatted(fileName))
.contentLength(bytes.length)
.contentType(MediaType.APPLICATION_OCTET_STREAM)
.body(resource) ;

Finally, to render a PDF file found at external URL the following can be used

<app-pdf-viewer
[mode]="mode"
externalUrl="http://www.somesite.com/report.pdf"
></app-pdf-viewer>

With the "mode" pointing to PdfViewerMode.EXTERNAL_URL. This will render the PDF file
found at the external URL

12.6. PDF viewer dialog

Additionally, it is also possible to use the PDF viewer inside a popup-dialog. In order to use
this component, include the following in your HTML file:

<ng-template #popupDialogContainerRef></ng-template>
<div class="btn-group" role="group">
<button type="submit" class="btn btn-primary m-1"
(click)="showDialog()">
Open Dialog
</button>
</div>

Dynamo: Reference documentation page 109 of 116

Then, in the typescript file, include the following;

@ViewChild('popupDialogContainerRef', { read: ViewContainerRef
})

ver!: ViewContainerRef;
showDialog() {
let componentRef = this.vcr!.createComponent

(PdfviewerDialogComponent) ;

componentRef.instance.mode = PdfViewerMode.MODEL

componentRef.instance.attributeName = 'logo.image’
componentRef.instance.entityld = 2
componentRef.instance.entityName = 'Gift'
componentRef.instance.showDialog();

In this code, we create a PdfViewerDialogComponent which is simply a wrapper around the
app-pdf-viewer component, and use the showDialog() method to open it.

The PdfViewerDialogComponent supports the same modes (and associated attributes) as
the app-pdf-viewer

Dynamo: Reference documentation page 110 of 116

13. Additional functionality

13.1. Excel and CSV export

The Dynamo Framework offers some functionality for automatically exporting data that is
displayed in results grid to Excel (. x1sx) or CSV format.

This functionality is enabled by default. It can be turned off on an entity model by entity
model basis.

If exporting is enabled for an entity, a context menu will show up in any results table (in you
right-click anywhere in the table). This menu will contain the options to create exports to both
Excel and CSV formats.

4 Exporteer
= naar Excel

4 EXxport naar
= CSV

Figure 11. Export screen.

The export that will be created contains all the data in the result set (i.e., all data that matches
the search criteria), not just the rows that are currently displayed - Dynamo will iterate over
the entire data set using pagination.

By default, the export will contain only the columns that are visible in the table, but you can
change the exportMode setting to FULL in order to include all attributes that have their
visibleInForm setting equalto true.

You can also use the exportModeReference property to configure which exact version of
the entity model to use for creating the export.

To further customize the export to Excel, it is possible to specify a custom style generator.
This can be done by implementing the CustomGeneratorProvider interface:

- The matches() method receives the class of the entity that is being exported, and an
optional reference to further specify the entity model to use, and must return true when
the generator is applicable.

- The getGenerator() method must return an instance of the
CustomXlsStyleGenerator functional interface.

@Component
public class OrganizationCustomGenerator implements
CustomGeneratorProvider {

@Override
public boolean matches(Class<?> entityClass, String

Dynamo: Reference documentation page 111 of 116

reference) {
return Organization.class.equals(entityClass);

}

@Override
public CustomXlsStyleGenerator getGenerator() {

return (workbook, entity, value, am, pivotColumnKey) -> {

if (am.getName().equals("name") && value instanceof
String str &&
str.startsWith("V")) {
CellStyle cellStyle = workbook.createCellStyle();
Font redFont = workbook.createFont();
redFont.setBold(true);
redFont.setColor(Font.COLOR_RED);
cellStyle.setFont(redFont);
return cellStyle;
}

return null;

}s

13.2. Lookup tables

Dynamo contains an optional module for working with domains/lookup tables. These are
simple database tables that typically contain only a couple of attributes and only a handful of
records that are often more or less stable over time. Some examples include a list of
countries, languages, order statuses, etc.

If you want to use Dynamo's functionality for easily managing lookup tables, you will have to
include the following dependency in your pomxml file:

<dependency>
<groupId>org.dynamoframework</groupId>
<artifactId>dynamo-functional-domain</artifactId>
<version>4.0.0-RC2</version>

</dependency>

This will give you access to a number of bases entities, DAOs, and services for managing
lookup tables/domains. The most important one is arguably the Domain entity which serves
as the base for all your lookup tables.

@Inheritance
@DiscriminatorColumn(name = "type")

Dynamo: Reference documentation page 112 of 116

@Entity(name = "domain")
@Model(displayProperty = "name", sortOrder = "name asc"
public abstract class Domain extends AbstractEntity<Integer> {

The idea is that you can define a lookup table class by subclassing this class as follows:

@Entity

@DiscriminatorValue("COUNTRY")

@Model(displayNamePlural = "Countries", displayProperty = "name",
sortOrder = "name asc”

public class Country extends DomainChild<Country, Region> {

As you can see, this example uses JPA inheritance to define a new entity that will be stored in
the domain table using JPA's “single table" inheritance model.

You can then define simple DAO and service objects for your domain class as follows (you
would normally place these in a class annotated with @Configuration).

@Bean
public BaseDao<Integer, Country> countryDao() {

return new DefaultDaoImpl<>(QCountry.country, Country.class,
"parent”);

}

@Bean
public BaseService<Integer, Country> countryService(BaseDao
<Integer, Country> dao) {

DefaultServiceImpl<Integer, Country> countryService = new
DefaultServiceImpl<>(dao, "code");

return countryService;

}

The DefaultDaoImpl and DefaultServiceImpl classes are part of the
o core dynamo implementation, so you can use them without adding the
dynamo-functional-domain dependencies to your pom. xml.

In addition to the Domain class, the dynamo-functional-domain module contains several
other classes like DomainParent and DomainChild that can be used to manage lookup
tables with simple hierarchies.

The Domain classes are database agnostic - this is great because you can use them with
multiple databases, but it does mean that some additional configuration is required to make
the module work with your database.

This configuration can be included in the orm.xml file that can be included in the
src/main/resources/META-INF directory. The following shows the configuration for

Dynamo: Reference documentation page 113 of 116

PostgreSQL:

<?xml version="1.0" encoding="UTF-8" 7>
<entity-mappings
xmlns="http://java.sun.com/xml/ns/persistence/orm"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"
version="1.0">
<sequence-generator name="domain_id_seq"
allocation-size="1" sequence-name="domain_id_seq" />
<sequence-generator name="parameter_id_seq"
allocation-size="1" sequence-name="parameter_id_seq" />
<entity class="org.dynamoframework.functional.domain.Domain">
<attributes>
<id name="id">
<generated-value strategy="SEQUENCE"
generator="domain_id_seq" />
</id>
</attributes>
</entity>
</entity-mappings>

Dynamo: Reference documentation page 114 of 116

Appendix A: Adding a new entity

This section provides a handy overview of the steps that have to be carried out in order to
add a new entity to the system

- Create a new database table to hold the data.

- Create a new entity class, and annotate it with the standard JPA annotations for ORM
mapping and validation.

- Annotate the entity with the @Model annotation to configure the entity model settings like
displayProperty, sortOrder, and createAllowed

- Annotate the entity with the @AttributeOrder (and optionally @GridAttributeOrder
and @SearchAttributeOrder)in order to configure the attribute ordering.

- Annotate the entity with one or more @AttributeGroup annotations if you want the
attributes to be grouped in a specific way inside the edit form.

- Use @FetchJoins to specify which relations to fetch in case of a search/list and in case
of the retrieval of an individual entity.

- Create the DAO and Service interfaces and their implementations

Make sure the individual attribute settings are correct (this can involve a lot of tweaking since
there are many settings, but this should cover the basics)

- Set the correct values for searchable, visibleInGrid and visibleInForm. Note that
by default no attributes are searchable, and that only basic attributes are visible inside
grids and forms. For any complex attributes, you will have to set visibleInGrid or
visibleInForm to true if you want these attributes to show up in respectively grids or
forms.

The following table lists some of the common things to look out for, for attributes of certain
types

String - Set the textFieldMode to determine whether you want to
use a text field or a text area

- Use the @Attribute(url=true) when the field represents

a URL

Integer or Long - Use the numberFieldMode to determine whether to use
spinner buttons

Decimal number - Use the currencyCode or percentage settings when

(BigDecimal) dealing with currencies or percentages

Enumeration - Make sure to provide translations for the enumeration values
in entityModel.properties

- Use the enumFieldMode to determine which input
component to use.

Dynamo: Reference documentation page 115 of 116

Attribute type Hints

(Local)Date

Instant or LocalDateTime

Many-to-one relationship
(“master”)

Many-to-many
relationship

One-to-many
relationship
(nested/dependent
attributes)

Element collection table

Boolean

« Determine

+ Determine

- Set the displayFormat

whether you want to
searchExactValue if applicable

search using

- Set the displayFormat

whether you want to
searchForDateOnly

search using

- Set the selectMode to distinguish between using a combo

box, au autocomplete component or a lookup field

- Make sure the displayProperty of the related entity is set

- If this attribute is searchable, considers whether you wants to

set multipleSearch to true to allow searching on multiple
values.

- Set the @Attribute(nestedDetails) setting to false

- Set the selectMode to distinguish between using a multi-

select component or a lookup field

- Make sure the displayProperty of the related entity is set
+ Think about whether you want the quickAddAllowed setting

to be true

- Make sure the entities are wired correctly (see below)

- Make sure the nestedDetails setting is set to true.

+ Make sure the elementCollectionMode is set correctly

- Use minLength and “maxLength to set the minimum and

maximum length (in case of strings)

- Set the booleanFieldMode to the desired value

- Consider adding custom trueRepresentation and values

For nested/dependent attributes it is important that the entities always wired correctly
(meaning that the parent entity correctly refers to the nested entity and vice versa). The
Dynamo Framework offers a utility method in the EntityUtils class for achieving this. Here
you can see an example of this.

public void setTranslations(Set<GiftTranslation> translations) {
wireRelations(this, this.translations, translations,
(translation, gift) -> translation.setGift(gift));

}

The wireRelations() function is static function from the EntityModelUtils class.

Dynamo: Reference documentation page 116 of 116

	Dynamo: Reference documentation
	Colophon
	Table of contents
	1. Introduction
	2. Architectural overview
	3. The entity model
	3.1. Basics
	3.2. Entity level settings
	3.3. Attributes
	3.4. Defaults and attribute overrides
	3.5. Message bundle overrides

	4. Attribute model settings
	4.1. Allowed extensions
	4.2. Attribute type
	4.3. Autofill instructions
	4.4. Boolean field mode
	4.5. Cascade
	4.6. Currency code
	4.7. Date type
	4.8. Default search value
	4.9. Default search value from
	4.10. Default search value to
	4.11. Default value
	4.12. Description
	4.13. Display format
	4.14. Display name
	4.15. Download allowed
	4.16. Editable type
	4.17. Element collection mode
	4.18. Email
	4.19. Enum field mode
	4.20. File name property
	4.21. Group together with
	4.22. Ignore in search filter
	4.23. Image
	4.24. Lookup entity reference
	4.25. Lookup query type
	4.26. Max collection size
	4.27. Max length
	4.28. Max length in grid
	4.29. Max value
	4.30. Member type
	4.31. Min collection size
	4.32. Min length
	4.33. Min value
	4.34. Multiple search
	4.35. Navigable
	4.36. Navigation link
	4.37. Needed in data
	4.38. Number field mode
	4.39. Number field step
	4.40. Percentage
	4.41. Precision
	4.42. Prompt
	4.43. Quick-add allowed
	4.44. Replacement search path
	4.45. Replacement sort path
	4.46. Required for searching
	4.47. Searchable
	4.48. Search case-sensitive
	4.49. Search date only
	4.50. Search for exact value
	4.51. Search prefix only
	4.52. Search select mode
	4.53. Select mode
	4.54. Sortable
	4.55. Text field mode
	4.56. Trim spaces
	4.57. True and false representation
	4.58. URL
	4.59. Visible in form
	4.60. Visible in grid

	5. Attribute ordering and grouping
	5.1. Attribute ordering
	5.2. Grid and search form attribute ordering
	5.3. Attribute grouping

	6. Advanced entity model topics
	6.1. Nested entity models
	6.2. Element collections

	7. Data access, service layers and general concepts
	7.1. Data access layer and entities
	7.2. Service
	7.3. Fetching and paging
	7.4. Entity initialization
	7.5. REST API
	7.6. Validation
	7.7. Checking for identical entities
	7.8. Default services and DAOs

	8. Configuration
	8.1. Prefix dynamoframework
	8.2. Prefix dynamoframework.ollama
	8.3. Prefix dynamoframework.openai
	8.4. Prefix dynamoframework.defaults
	8.5. Prefix dynamoframework.defaults.endpoints
	8.6. Prefix dynamoframework.bedrock
	8.7. Prefix dynamoframework.vertexai
	8.8. Prefix dynamoframework.csv

	9. Project set-up
	9.1. Back-end set-up
	9.2. Message bundles
	9.3. Authentication and authorization
	9.4. Front-end set-up
	9.5. Adding Dynamo to an existing front-end project
	9.6. Code generation

	10. General front-end services
	10.1. Localization
	10.2. Notification messages

	11. General UI concepts
	11.1. Search filters
	11.2. Updates
	11.3. Editing complex attributes
	11.4. Hidden fields
	11.5. View objects
	11.6. Entity model actions
	11.7. Authorization

	12. Composite UI components
	12.1. GenericSearchLayout
	12.2. GenericForm
	12.3. GenericSplitLayout
	12.4. GenericEditTableLayout
	12.5. PDF viewer
	12.6. PDF viewer dialog

	13. Additional functionality
	13.1. Excel and CSV export
	13.2. Lookup tables

	Appendix A: Adding a new entity

